精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ax,其中e为自然对数的底数,a为常数.
(1)若对函数f(x)存在极小值,且极小值为0,求a的值;
(2)若对任意x∈[0,
π2
]
,不等式f(x)≥ex(1-sinx)恒成立,求a的取值范围.
分析:(1)求导函数,对a讨论,确定函数的单调性,利用函数f(x)存在极小值,且极小值为0,可求a的值;
(2)对任意x∈[0,
π
2
]
,不等式f(x)≥ex(1-sinx)恒成立,等价于对任意x∈[0,
π
2
]
,不等式exsinx-ax≥0恒成立,构造新函数,分类讨论,确定函数的单调性,即可求a的取值范围.
解答:解:(1)∵f(x)=ex-ax,∴f′(x)=ex-a,
当a≤0时,f′(x)>0,函数在R上是增函数,从而函数不存在极值,不合题意;
当a>0时,由f′(x)>0,可得x>lna,由f′(x)<0,可得x<lna,∴x=lna为函数的极小值点,
由已知,f(lna)=0,即lna=1,∴a=e;
(2)不等式f(x)≥ex(1-sinx),即exsinx-ax≥0,
设g(x)=exsinx-ax,则g′(x)=ex(sinx+cosx)-a,g″(x)=2excosx,
x∈[0,
π
2
]
时,g″(x)≥0,则g′(x)在x∈[0,
π
2
]
时为增函数,∴g′(x)=g′(0)=1-a.
①1-a≥0,即a≤1时,g′(x)>0,g(x)在x∈[0,
π
2
]
时为增函数,∴g(x)min=g(0)=0,此时g(x)≥0恒成立;
②1-a<0,即a>1时,存在x0∈(0,
π
2
),使得g′(x0)<0,从而x∈(0,x0)时,g′(x)<0,∴g(x)在[0,x0]上是减函数,
∴x∈(0,x0)时,g(x)<g(0)=0,不符合题意.
综上,a的取值范围是(-∞,1].
点评:本题考查导数知识的运用,考查函数的单调性与极值,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(cosx+sinx),将满足f′(x)=0的所有正数x从小到大排成数列{xn}.求证:数列{f(xn)}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•西城区二模)已知函数f(x)=e|x|+|x|.若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•菏泽一模)已知函数f(x)=e|lnx|-|x-
1
x
|,则函数y=f(x+1)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-xsinx(其中e=2.718…).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求f(x)在[-π,+∞)上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x(x2+x+1).
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)求函数f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案