分析 根据定积分的性质,可得[xcosx+(x+1)ex]dx=${∫}_{-1}^{1}$xcosxdx+${∫}_{-1}^{1}$[(x+1)ex]dx,由奇函数在对称区间的定积分为0,由${∫}_{-1}^{1}$[(x+1)ex]dx=(xex)${丨}_{-1}^{1}$,即可求得答案.
解答 解:${∫}_{-1}^{1}$[xcosx+(x+1)ex]dx=${∫}_{-1}^{1}$xcosxdx+${∫}_{-1}^{1}$[(x+1)ex]dx,
由y=xcosx为奇函数,则${∫}_{-1}^{1}$xcosxdx=0,
${∫}_{-1}^{1}$[(x+1)ex]dx=(xex)${丨}_{-1}^{1}$=e-(-e-1)=e+e-1,
∴${∫}_{-1}^{1}$[xcosx+(x+1)ex]dx=e+e-1.
故答案为:e+e-1.
点评 本题考查定积分的运算及定积分的运算,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 曰期 | 8月1曰 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
| 平均气温(℃) | 33 | 30 | 32 | 30 | 25 |
| 用电量(万度) | 38 | 35 | 41 | 36 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{π}^{3}}{81}$+$\frac{1}{2}$ | B. | $\frac{{π}^{3}}{81}$-$\frac{1}{2}$ | C. | $\frac{2π}{3}$-$\frac{1}{2}$ | D. | $\frac{2π}{3}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}}}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$或$\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com