【题目】如图所示,在三棱锥A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,动点D在线段AB上.
(1)求证:平面COD⊥平面AOB;
(2)当OD⊥AB时,求三棱锥C-OBD的体积.
【答案】(1)详见解析(2)
【解析】
试题分析:(1)欲证平面COD⊥平面AOB,根据面面垂直的判定定理可知在平面COD内一直线与平面AOB垂直,根据勾股定理可知OC⊥OB,根据线面垂直的判定定理可知OC⊥平面AOB,而OC平面COD,满足定理所需条件;(2)OD⊥AB,OD=,此时,BD=1.根据三棱锥的体积公式求出所求即可
试题解析:(1)∵AO⊥底面BOC,
∴AO⊥OC,
AO⊥OB. ……3
∵∠OAB=∠OAC=30°,AB=AC=4,
∴OC=OB=2.
又BC=2,
∴OC⊥OB, ……6
∴OC⊥平面AOB.
∵OC平面COD,
∴平面COD⊥平面AOB. ……9
(2)∵OD⊥AB,∴BD=1,OD=.
∴VC-OBD = ×××1×2= ……12
科目:高中数学 来源: 题型:
【题目】某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获(单位:)与它的“相近”作物株数之间的关系如下表所示:
1 | 2 | 3 | 4 | |
51 | 48 | 45 | 42 |
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(2)在所种作物中堆积选取一株,求它的年收获量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】几何证明选讲
在直角坐标系中,曲线的参数方程为(是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程,并指出其表示何种曲线;
(2)若曲线与曲线交于两点,求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为原点,A,B,C为平面内的三点.求证:
(1) 若A,B,C三点共线,则存在实数α,β,且α+β=1,
(2) 若存在实数α,β,且α+β=1,使得,则A,B,C三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:)
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com