精英家教网 > 高中数学 > 题目详情

【题目】几何证明选讲

在直角坐标系中,曲线的参数方程为是参数),以原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的直角坐标方程,并指出其表示何种曲线;

(2)若曲线与曲线交于两点,求的最大值和最小值.

【答案】(1),其表示一个以为圆心,半径为的圆;(2)最大为,最小值.

【解析】

试题分析:(1)利用极坐标与直角坐标的互化方法,即可得出结论;(2)由题意知曲线 是过点的直线,结合图形可知,当直线过圆心时,弦长最长,当为过点且与垂直时,弦长最短.

试题解析:(1)对于曲线 ,即,因此曲线的直角坐标方程为,其表示一个以为圆心,半径为 的圆;

(2)曲线 是过点的直线,由知点在曲线内,所以当直线过圆心时,的最大为

为过点且与垂直时,最小,,最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 为正实数

1)当时,求曲线在点处的切线方程;

2求证:

3)若函数且只有零点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图(如图所示),已知图中从左到右前三个小组的频率分别时0.1,0.3,0.4,第一小组的频数为5.

(1)求第四小组的频率?

(2)问参加这次测试的学生人数是多少?

(3)问在这次测试中,学生跳绳次数的中位数落在第几小组内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,已知,点在底面的投影是线段的中点

(1)证明:在侧棱上存在一点,使得平面,并求出的长;

(2)求:平面与平面夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产甲、乙两种产品均需用两种原料,已知每种产品各生产吨所需原料及每天原料的可用限额如下表所示,如果生产吨甲产品可获利润3万元,生产吨乙产品可获利万元,则该企业每天可获得最大利润为___________万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,平面,且为等边三角形,与平面所成角的正弦值为

1)若是线段的中点,证明:平面

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱锥A-BOC中,OA底面BOC,OAB=OAC=30°,AB=AC=4,BC=,动点D在线段AB上.

(1)求证:平面COD平面AOB;

(2)当ODAB时,求三棱锥C-OBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线 上有一点列过点x轴上的射影是123+…+n=2n+1n-2.n∈N*)

(1)求数列{}的通项公式

(2)设四边形 的面积是,求

(3)在(2)条件下,求证 .

查看答案和解析>>

同步练习册答案