精英家教网 > 高中数学 > 题目详情
1.设A,B分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,M分别为双曲线和椭圆上异于A,B的两动点,且满足$\overline{AP}$+$\overline{BP}$=$λ(\overline{AM}+\overline{BM})$,其中λ∈R,|λ|>1,设直线AP,BP,AM,BM的斜率分别为k1,k2,k3,k4且k1+k2=5,则k3+k4=-5.

分析 如图所示,由满足$\overline{AP}$+$\overline{BP}$=$λ(\overline{AM}+\overline{BM})$,其中λ∈R,|λ|>1,利用向量的平行四边形法则可得:O,M,P三点共线.设P(x1,y1),M(x2,y2),$\frac{{y}_{1}}{{x}_{1}}=\frac{{y}_{2}}{{x}_{2}}$=k≠0.分别利用点在双曲线与椭圆上可得$\frac{{x}_{1}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{y}_{1}^{2}}{{b}^{2}}$,$\frac{{x}_{2}^{2}-{a}^{2}}{{a}^{2}}$=-$\frac{{y}_{2}^{2}}{{b}^{2}}$.k1+k2=5,利用斜率计算公式可得5=$\frac{2{b}^{2}}{{a}^{2}}•\frac{1}{k}$.再利用向量计算公式即可得出k3+k4

解答 解:如图所示,
∵满足$\overline{AP}$+$\overline{BP}$=$λ(\overline{AM}+\overline{BM})$,其中λ∈R,|λ|>1,
∴-2$\overrightarrow{PO}$=λ•(-2$\overrightarrow{MO}$),
∴O,M,P三点共线.
设P(x1,y1),M(x2,y2),$\frac{{y}_{1}}{{x}_{1}}=\frac{{y}_{2}}{{x}_{2}}$=k≠0.
则$\frac{{x}_{1}^{2}}{{a}^{2}}$-$\frac{{y}_{1}^{2}}{{b}^{2}}$=1,$\frac{{x}_{2}^{2}}{{a}^{2}}$+$\frac{{y}_{2}^{2}}{{b}^{2}}$=1,
∴$\frac{{x}_{1}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{y}_{1}^{2}}{{b}^{2}}$,$\frac{{x}_{2}^{2}-{a}^{2}}{{a}^{2}}$=-$\frac{{y}_{2}^{2}}{{b}^{2}}$,
∵k1+k2=5,
∴5=$\frac{{y}_{1}}{{x}_{1}+a}$+$\frac{{y}_{1}}{{x}_{1}-a}$=$\frac{2{x}_{1}{y}_{1}}{{x}_{1}^{2}-{a}^{2}}$=$\frac{2{x}_{1}{y}_{1}}{\frac{{{a}^{2}y}_{1}^{2}}{{b}^{2}}}$=$\frac{2{b}^{2}}{{a}^{2}}•\frac{1}{k}$.
∴k3+k4=$\frac{{y}_{2}}{{x}_{2}+a}+\frac{{y}_{2}}{{x}_{2}-a}$=$\frac{2{x}_{2}{y}_{2}}{{x}_{2}^{2}-{a}^{2}}$=-$\frac{2{b}^{2}}{{a}^{2}}$$•\frac{1}{k}$=-5.
故答案为:-5.

点评 本题考查了椭圆与双曲线的标准方程及其性质、向量的平行四边形法则、斜率计算公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,ABCD为等腰梯形,且AD∥BC,E为BC的中点,AB=AD=BE,沿DE将△CDE折起成四棱锥C-ABED.
(1)设点O为ED的中点,问在棱AC上是否存在一点M使得OM∥平面CBE,并证明你的结论;
(2)若AB=2,求四棱锥C-ABED体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的体积是(  )
A.14πB.12πC.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱锥的所有顶点都在球O的球面上,四边形ABCD是边长为1的正方形,SC为球O的直径且SC=4,求四棱锥的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点为F1、F2,点A(2,$\sqrt{2}$)在椭圆上,且AF2与x轴垂直.
(1)求椭圆的方程;
(2)过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的几何体中,已知△BCD是等腰直角三角形且BD=CD,AB=BC=AC=2,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC.
(1)证明:AE∥平面BCD;
(2)证明:平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若a>0,(1+ax)4=a0+a1x+a2x2+a3x3+a4x4,且a0+a1+a2=3,则a的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=|x-1|-|x+3|
(1)解不等式f(x)>2;
(2)若不等式f(x)≤kx+1在x∈[-3,-1]上恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,且该几何体的体积是6,则正视图中的x的值是(  )
A.9B.8C.3D.6

查看答案和解析>>

同步练习册答案