精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
2-x-1(x≤0)
f(x-1)(x>0)
,若f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(  )
A、(-∞,0]
B、(-∞,0)
C、[0,1)
D、[0,+∞)
考点:函数的零点与方程根的关系
专题:函数的性质及应用
分析:由题知f(x)为分段函数,当x大于0时,由f(x)=f(x-1)可知当x大于1时,f(x)=0,小于1大于0时函数为减函数;当x小于等于0时函数为减函数,而方程f(x)=x+a有且只有两个不相等的实数根即f(x)与y=x+a由两个交点,在同一坐标系中画出函数f(x)的图象与函数y=x+a的图象,利用数形结合,易求出满足条件实数a的取值范围.
解答: 解:解:函数f(x)=
2-x-1,(x≤0)
f(x-1),(x>0)
的图象如图所示,
当a<1时,函数y=f(x)的图象与函数y=x+a的图象有两个交点,
即方程f(x)=x+a有且只有两个不相等的实数根.
∴a的范围是:(-∞,1),
故选:B.
点评:考查学生综合运用函数和方程的能力,以及让学生掌握数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义函数f(x)=
4-8|x-
3
2
|,1≤x≤2
1
2
f(
x
2
),x>2
,则函数g(x)=xf(x)-6在区间[1,64]内所有的零点的和为(  )
A、192
B、189
C、
189
4
D、
189
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F(1,0),直线l:x=-1交x轴于点H,点M是l上的动点,过点M垂直于l的直线与线段MF的垂直平分线交于点P.
(1)求点P的轨迹C的方程;
(2)若A、B为轨迹C上的两个动点,且
OA
OB
=-4,证明:直线AB必过一定点,并求出该点.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假:
(1)若一个整数的末位数字是0,则这个整数能被5整除;
(2)若一个三角形有两条边相等,则这个三角形有两个角相等;
(3)奇函数的图象关于原点对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2ωx+
π
6
)+
1
2
+a,其图象相邻对称轴之间的距离为
π
2
,f(x)的最大值为
1
2

(1)求ω和a;
(2)将函数y=f(x)的图象向左平移
π
24
个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,3π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:①若a>b,则a+c>b+c;②
2
是有理数;③在实数范围内方程x2+9=0无解;④集合A∪B是集合A的子集,其中真命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log0.40.6,b=log1.20.9,c=2,则a、b、c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有4个结论:
①对于任意x∈(0,1),log
1
3
x>log
1
4
x;
②存在x∈(0,+∞),(
1
3
x<(
1
4
x
③对于任意的x∈(0,
1
4
),(
1
3
xlog
1
4
x;
④对于任意的x∈(0,+∞),(
1
3
xlog
1
3
x
其中的正确的结论是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知以C1为圆心的圆的方程为:(x+1)2+y2=1,以C2为圆心的圆的方程为:(x-3)2+(y-4)2=1.
(Ⅰ)若过点C1的直线l沿x轴向左平移3个单位,沿y轴向下平移4个单位后,回到原来的位置,求直线l被圆C2截得的弦长;
(Ⅱ)圆D是以1为半径,圆心在圆C3:(x+1)2+y2=9上移动的动圆,若圆D上任意一点P分别作圆C1的两条切线PE,PF,切点为E,F,求
C1E
C1F
的取值范围.

查看答案和解析>>

同步练习册答案