精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(2ωx+
π
6
)+
1
2
+a,其图象相邻对称轴之间的距离为
π
2
,f(x)的最大值为
1
2

(1)求ω和a;
(2)将函数y=f(x)的图象向左平移
π
24
个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,3π]上的单调区间.
考点:函数y=Asin(ωx+φ)的图象变换,正弦函数的单调性
专题:三角函数的图像与性质
分析:(1)由函数的周期求得ω,由最大值求得a的值.
(2)根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再根据正弦函数的单调性求出它的单调区间,结合x∈[0,3π],进一步确定函数的单调区间.
解答: 解:(1)由题意可得,函数的周期为
=2×
π
2
,求得ω=1.再根据1+
1
2
+a=
1
2
,求得a=-1.
(2)由(1)可得f(x)=sin(2x+
π
6
)-
1
2

将函数y=f(x)的图象向左平移
π
24
个单位,可得函数y=sin[2(x+
π
24
)+
π
6
]=sin(2x+
π
4
)的图象;
再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)=sin(
1
2
x+
π
4
) 的图象.
令2kπ-
π
2
1
2
x+
π
4
≤2kπ+
π
2
,k∈z,求得4kπ-
2
≤x≤4kπ+
π
2
,故函数的增区间为[4kπ-
2
,4kπ+
π
2
],k∈z.
令2kπ+
π
2
1
2
x+
π
4
≤2kπ+
2
,k∈z,求得4kπ+
π
2
≤x≤4kπ+
2
,故函数的减区间为[4kπ+
π
2
,4kπ+
2
],k∈z.
再结合x∈[0,3π],可得函数的增区间为[0,
π
2
]、[
2
,3π];减区间为[
π
2
2
].
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知m,n为正数,实数x,y满足
2
x+
2
y-3
x+m
-3
y+n
=0,若x+y的最大值为27,则m+n=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:sin
π
6
-cos2
π
4
cosπ-
1
3
tan2
π
3
-cosπ+sin
π
2
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线ax+by=ab(a>0,b<0)的倾斜角是(  )
A、arctan(-
a
b
)
B、arctan
a
b
C、π-arctan
a
b
D、
π
2
+arctan
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinθ
sin2θ
+cosθ
cos2θ
=-1(θ≠
2
k∈z),判断θ是第几象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1(x≤0)
f(x-1)(x>0)
,若f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是(  )
A、(-∞,0]
B、(-∞,0)
C、[0,1)
D、[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(3,-2)且与两坐标轴围城一个等腰直角三角形,则l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(x-
π
6
)=-
3
3
,则sinx=
 
,sin(x-
π
3
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,n∈N*,若
an+2-an+1
an+1-an
=k(k为常数),则称{an}为“等差比数列”,下列是对“等差比数列”的判断:
①k不可能为0;
②等差数列一定是“等差比数列”;
③等比数列一定是“等差比数列”;
④“等差比数列”中可以有无数项为0.
其中正确判断命题的序号是
 

查看答案和解析>>

同步练习册答案