精英家教网 > 高中数学 > 题目详情
16.已知曲线C:(x-y)2+y2=1在矩阵$A[{\begin{array}{l}2&{-2}\\ 0&1\end{array}}]$对应的变换下得到曲线C',则曲线C'的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.

分析 设P(x0,y0)为曲线C上任意一点,点P在矩阵A对应的变换下得到点Q(x,y),利用$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,然后求解曲线C′的方程.

解答 解:设P(x0,y0)为曲线C上任意一点,点P在矩阵A对应的变换下得到点Q(x,y),
则:$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{2}&{-2}\\{0}&{1}\end{array}]$$[\begin{array}{l}{{x}_{0}}\\{{y}_{0}}\end{array}]$,即 $\left\{\begin{array}{l}{x=2{x}_{0}-2{y}_{0}}\\{y={y}_{0}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{x}_{0}=\frac{x}{2}+y}\\{{y}_{0}=y}\end{array}\right.$,…(5分)
(注:用逆矩阵的方式求解同样给分)
又(x0-y02+y02=4,∴($\frac{x}{2}$+y-y)2+y2=1,即$\frac{{x}^{2}}{4}+{y}^{2}=1$
∴曲线C′的方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$;
故答案为:$\frac{{x}^{2}}{4}+{y}^{2}=1$.

点评 本题考查矩阵的变换,曲线方程的求法,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.命题p:函数f(x)=(3-m)x在R上是增函数,命题q:?x∈R,x2+2x+m≥0,若p∧q为假命题,p∨q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=asin2x+2asinx+4的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个体积为12$\sqrt{3}$的正棱柱的三视图,如图所示,则该三棱柱的高为(  )
A.3B.$3\sqrt{3}$C.$2\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,图中小方格的长度为1,则该几何体的表面积为(  )
A.65B.$\frac{105+3\sqrt{34}}{2}$C.$\frac{70+3\sqrt{34}}{2}$D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.“a=1”是“复数z=(a2-1)+(a+1)i,(其中i是虚数单位)为纯虚数”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若某程序框图如图所示,则该程序运行后输出的i的值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数学与文学有许多奇妙的联系,如诗中有回文诗:“儿忆父兮妻忆夫”,既可以顺读也可以逆读,数学中有回文数,如343、12521等,两位数的回文数有11、22、33、…、99共9个,则三位数的回文数中为偶数的概率是(  )
A.$\frac{1}{9}$B.$\frac{2}{9}$C.$\frac{3}{9}$D.$\frac{4}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xex-1-$\frac{1}{2}$mx2-mx,m∈R.
(1)当m=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性并判断有无极值,有极值时求出极值.

查看答案和解析>>

同步练习册答案