精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x2+(a+1)x-b2-2b,且数学公式,又知f(x)≥x恒成立,求:
(1)y=f(x)的解析式;
(2)若函数g(x)=log2[f(x)-x-1],求函数g(x)的单调增区间.

解:(1)由,知f(x)图象的对称轴为x=
所以-=,解得a=-2,
f(x)≥x,即x2-x-b2-2b≥x,
所以x2-2x-b2-2b≥0,即(x-1)2-(b+1)2≥0,
因为f(x)≥x恒成立,所以-(b+1)2≥0,所以b=-1,
所以y=f(x)=x2-x+1.
(2)由(1)知g(x)=log2(x2-2x),
由x2-2x>0解得x<0或x>2,所以函数g(x)的定义域为(-∞,0)∪(2,+∞),
因为y=log2t递增,t=x2-2x在(2,+∞)上递增,
所以g(x)在(2,+∞)上递增,即g(x)的递增区间为(2,+∞)上递增;
分析:(1)由,知f(x)图象的对称轴,从而可求得a值,由f(x)≥x即(x-1)2-(b+1)2≥0恒成立,可得-(b+1)2≥0,由此 可解得b值;
(2)由(1)知g(x)=log2(x2-2x),先求出函数g(x)的定义域,根据复合函数单调性的判断方法:同增异减,即可求得g(x)的增区间;
点评:本题考查复合函数单调性的判断及二次函数的性质,属中档题,复合函数单调性的判断方法是:同增异减.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案