分析 (1)容易求出sin∠ABC=$\frac{5}{13}$,并且可求出$|\overrightarrow{BA}||\overrightarrow{BC}|$的值,根据三角形面积公式即可求出△ABC的面积;
(2)可以E为坐标原点,AC所在直线为x轴建立平面直角坐标系,并可得到A(-2,0),C(2,0),并设D(x,y),根据条件可求得E点坐标,从而求出$\overrightarrow{BA},\overrightarrow{BC}$的坐标,进行数量积的坐标运算即可求得x2+y2=4,这样便可求出$\overrightarrow{DA}•\overrightarrow{DC}$的值.
解答 解:(1)∵$cos∠ABC=\frac{12}{13}$,∠ABC∈(0,π);
∴$sin∠ABC=\sqrt{1-{{({\frac{12}{13}})}^2}}=\frac{5}{13}$;
∵$\overrightarrow{BA}•\overrightarrow{BC}=|\overrightarrow{BA}||\overrightarrow{BC}|cos∠ABC$=$|\overrightarrow{BA}||\overrightarrow{BC}|•\frac{12}{13}=12$;
∴$|\overrightarrow{BA}||\overrightarrow{BC}|=13$;
∴${S}_{△ABC}=\frac{1}{2}|\overrightarrow{BA}||\overrightarrow{BC}|sin∠ABC$=$\frac{1}{2}×13×\frac{5}{13}=\frac{5}{2}$;
(2)以E为原点,AC所在直线为x轴,建立如图所示平面直角坐标系:![]()
则A(-2,0),C(2,0),设D(x,y);
由$\overrightarrow{BE}=2\overrightarrow{ED}$,可得B(-2x,-2y);
则$\overrightarrow{BA}•\overrightarrow{BC}=12=(2x-2,2y)•(2x+2,2y)=4{x^2}-4+4{y^2}$=12;
∴x2+y2=4;
∴$\overrightarrow{DA}•\overrightarrow{DC}=({-2-x,-y})•({2-x,-y})={x^2}+{y^2}-4=0$.
点评 考查sin2α+cos2α=1,数量积的计算公式,三角形的面积公式,通过建立平面直角坐标系,利用坐标解决向量问题的方法,以及向量数量积的坐标运算.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100° | B. | 160° | C. | 100°或160° | D. | 130° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | ($\frac{7}{4}$,2) | C. | (2,2) | D. | (3,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com