精英家教网 > 高中数学 > 题目详情
18.f(x)=x5+ax3+bx-8且f(-2)=0,则f(2)等于(  )
A.-16B.-18C.-10D.10

分析 由已知者f(-2)=-32-8a-2b-8=0,从而8a+2b=-40,由此能求出f(2).

解答 解:∵f(x)=x5+ax3+bx-8且f(-2)=0,
∴f(-2)=-32-8a-2b-8=0,
解得8a+2b=-40,
∴f(2)=32+8a+2b-8=-16.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量(单位:件),整理得表:
日需求量n89101112
频数101015105
①假设该店在这50天内每天购进10件该商品,求这50天的日利润(单位:元)的平均数;
②若该店一天购进10件该商品,记“当天的利润在区间[400,550]”为事件A,求P(A)的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U={-1,0,1,2},集合A={-1,2},则∁UA={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合M={2,3,5},集合N={3,4,5},则M∪N={2,3,4,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow{b}$=(cosβ,sinβ),且0<α<β<π,则$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知sinα=$\frac{4}{9}\sqrt{2}$,且α为钝角,则cos$\frac{α}{2}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四边形ABCD中,|${\overrightarrow{AC}}$|=4,$\overrightarrow{BA}$•$\overrightarrow{BC}$=12,E为AC的中点.
(1)若cos∠ABC=$\frac{12}{13}$,求△ABC的面积S△ABC
(2)若$\overrightarrow{BE}$=2$\overrightarrow{ED}$,求$\overrightarrow{DA}$•$\overrightarrow{DC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于点D.以A1为坐标原点建立空间直角坐标系,如图所示.
(1)写出A1、B、B1、C、D、P的坐标;
(2)求异面直线A1B与PB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.研究y=x${\;}^{-\frac{4}{3}}$的定义域、奇偶性、单调性,作出函数的图象.

查看答案和解析>>

同步练习册答案