精英家教网 > 高中数学 > 题目详情
14.在等比数列{an}中,an<0且a1a5+2a42+a3a7=25,则a3+a5=-5.

分析 根据等比数列的性质化简已知等式左边的第一与第三项,再利用完全平方公式变形求出(a3+a52的值,根据等比数列的各项都为负数,开方即可求出a3+a5的值.

解答 解:在等比数列{an} 中,an<0且a1a5+2a3a5+a3a7=25,
即a32+2a3a5+a52=25,
∴(a3+a52=25,
解得:(a3+a5 )=-5.
故答案为:-5

点评 此题考查了等比数列的性质,以及完全平方公式的应用,根据等比数列的性质得出a32+2a3a5+a52=25是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知⊙O的圆心为原点,与直线3x+4y-15=0相切,⊙M的方程为(x-3)2+(y-4)2=1,过⊙M上任一点P作⊙O的切线PA,切点为A,若直线PA与⊙M的另一交点为Q,当弦PQ最大时,则PA的直线方程为x=3或7x-24y+75=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆O:x2+y2=2,直线l:y=kx-2.
(1)若直线l与圆O交于不同的两点A,B,当∠AOB=$\frac{π}{2}$时,求k的值.
(2)若EF、GH为圆O:x2+y2=2的两条相互垂直的弦,垂足为M(1,$\frac{\sqrt{2}}{2}$),求四边形EGFH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U={1,2,3,4,5},集合A={1,3,5},B={3,4,5},则集合∁U(A∩B)={1,2,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若数列{an}前n项和Sn满足${S_n}={n^2}$,则这个数列的通项公式为an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=x2-2x-4在区间(a,+∞)上是增函数,则a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}满足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求数列{an}的通项公式an
(2)令bn=anan+2(n∈N*),Tn=b1+b2+…+bn,求证:Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知过抛物线y2=2px(p>0)的焦点,斜率为$2\sqrt{2}$的直线交抛物线于不同两点A(x1,y1 )、B(x2,y2 ),(x1<x2),且|AB|=9.
(Ⅰ)求该抛物线的方程;
(Ⅰ)O为坐标原点,C为抛物线上一点,若$\overrightarrow{OC}=\overrightarrow{OA}+λ\overrightarrow{OB}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.抛物线y2=4x上一点到其焦点距离为3,则该点坐标为(1,±3).

查看答案和解析>>

同步练习册答案