精英家教网 > 高中数学 > 题目详情
19.函数f(x)=x2-2x-4在区间(a,+∞)上是增函数,则a的取值范围为(  )
A.(-∞,1)B.(-∞,1]C.[1,+∞)D.(1,+∞)

分析 利用二次函数的单调性与对称轴的关系即可得出.

解答 解:∵函数的对称轴为:x=1,函数的单调增区间为:[1,+∞),
函数f(x)=x2-2x-4在区间(a,+∞)上是增函数,
∴a≥1.
故选:C.

点评 熟练掌握二次函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{x+2}+\frac{1}{2x+1}$
(1)求函数f(x)的定义域
(2)求f(-1),当a>0时,求f(a+1)
(3)判断点$({2,\frac{11}{5}})$是否在f(x)的函数图象上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)定义域是$\{x\left|x\right.≠\frac{t}{2},t∈Z,x∈R\}$,且f(x)+f(2-x)=0,f(x+1)=-$\frac{1}{f(x)}$,当-1<x<-$\frac{1}{2}$时,f(x)=-2-x
(Ⅰ)证明:f(x)为奇函数;
(Ⅱ)求f(x)在$(\frac{1}{2},1)$上的表达式;
(Ⅲ)是否存在正整数t,使得$x∈(3t+\frac{1}{2},3t+1)$时,log2f(x-3t)>x2-2tx-3t有解,若存在求出t的值,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:?x∈R,x2+2≥0;写出命题p的否定:?x∈R,x2+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在等比数列{an}中,an<0且a1a5+2a42+a3a7=25,则a3+a5=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a=(x,2)$,$\overrightarrow b=(2,-1)$,$\overrightarrow a$∥$\overrightarrow b$,则$|\overrightarrow a+\overrightarrow b|$=(  )
A.2$\sqrt{5}$B.5C.$\sqrt{10}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数中,既是奇函数又在[0,1]上单调递增的是(  )
A.y=|x|•x3B.y=xlnxC.y=x•cosxD.$y=-x-\frac{1}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=2x2-2x的单调递增区间是(  )
A.(-∞,1]B.[1,+∞)C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠DAB=60°,AB=2,△PAD为等边三角形,平面PAD⊥平面ABCD.
(1)求证AD⊥PB.
(2)在棱AB上是否存在点F,使DF与平面PDC所成角的正弦值为$\frac{2\sqrt{5}}{5}$?若存在,确定线段AF的长度;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案