精英家教网 > 高中数学 > 题目详情

已知有相同两焦点的椭圆和双曲线是它们的一个交点,则的形状是 (   )

A.锐角三角形       B.直角三角形        C.钝有三角形        D.等腰三角形

 

【答案】

B

【解析】

试题分析:焦点,由椭圆定义得,由双曲线定义得,在中,满足,是直角三角形

考点:椭圆双曲线定义及性质

点评:椭圆上的点到两焦点的距离之和等于椭圆中的,双曲线上的点到两焦点的距离之差的绝对值等于双曲线中的,两定义在圆锥曲线题目中应用广泛

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•浦东新区二模)(1)设椭圆C1
x2
a2
+
y2
b2
=1
与双曲线C29x2-
9y2
8
=1
有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值; 
(3)由抛物线弧E1:y2=4x(0≤x≤
2
3
)与第(1)小题椭圆弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求
r1
r2
的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市浦东新区高三4月高考预测(二模)理科数学试卷(解析版) 题型:解答题

(1)设椭圆与双曲线有相同的焦点是椭圆与双曲线的公共点,且的周长为,求椭圆的方程;

我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.

(2)如图,已知“盾圆”的方程为.设“盾圆”上的任意一点的距离为到直线的距离为,求证:为定值;

 

(3)由抛物线弧)与第(1)小题椭圆弧)所合成的封闭曲线为“盾圆”.设过点的直线与“盾圆”交于两点,),试用表示;并求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)设椭圆C1数学公式与双曲线C2数学公式有相同的焦点F1、F2,M是椭圆C1与双曲线C2的公共点,且△MF1F2的周长为6,求椭圆C1的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆D”的方程为数学公式.设“盾圆D”上的任意一点M到F(1,0)的距离为d1,M到直线l:x=3的距离为d2,求证:d1+d2为定值;
(3)由抛物线弧E1:y2=4x(0数学公式)与第(1)小题椭圆弧E2数学公式数学公式)所合成的封闭曲线为“盾圆E”.设过点F(1,0)的直线与“盾圆E”交于A、B两点,|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),试用cosα表示r1;并求数学公式的取值范围.

查看答案和解析>>

同步练习册答案