分析 (Ⅰ)取AD的中点F,连结EF,CF,推导出EF∥PA,CF∥AB,从而平面EFC∥平面ABP,由此能证明EC∥平面PAB.
(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,推导出四边形BCDF为矩形,从而BF⊥AD,进而AD⊥平面PBF,由AD∥BC,得BC⊥PB,再求出BC⊥MF,由此能求出sinθ.
解答 证明:(Ⅰ)取AD的中点F,连结EF,CF,![]()
∵E为PD的中点,∴EF∥PA,
在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,
∴CF∥AB,∴平面EFC∥平面ABP,
∵EC?平面EFC,
∴EC∥平面PAB.
解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,
∵PA=PD,∴PF⊥AD,
推导出四边形BCDF为矩形,∴BF⊥AD,
∴AD⊥平面PBF,又AD∥BC,
∴BC⊥平面PBF,∴BC⊥PB,
设DC=CB=1,则AD=PC=2,∴PB=$\sqrt{3}$,
BF=PF=1,∴MF=$\frac{1}{2}$,
又BC⊥平面PBF,∴BC⊥MF,
∴MF⊥平面PBC,即点F到平面PBC的距离为$\frac{1}{2}$,
∵MF=$\frac{1}{2}$,D到平面PBC的距离应该和MF平行且相等,为$\frac{1}{2}$,
E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,
∴E到平面PBC的距离为$\frac{1}{4}$,
在$△PCD中,PC=2,CD=1,PD=\sqrt{2}$,
由余弦定理得CE=$\sqrt{2}$,
设直线CE与平面PBC所成角为θ,则sinθ=$\frac{\frac{1}{4}}{CE}$=$\frac{\sqrt{2}}{8}$.
点评 本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$+1 | B. | $\frac{π}{2}$+3 | C. | $\frac{3π}{2}$+1 | D. | $\frac{3π}{2}$+3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com