精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点为F,过F作斜率为
b
a
的直线与椭圆交于A,B两点,若|FB|≥2|FA|,则椭圆的离心率e的取值范围是
 
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:设椭圆的右准线为l,设A、B两点在l上的射影分别为C、D,连接AC、BD,过点B作BG⊥AC利用圆锥曲线的统一定义,再结合直角△ABG中,tan∠BAG=
b
a
,可求出边之间的长度之比,可得离心率的取值范围.
解答: 解:如图,设椭圆的右准线为l,过A点作AC⊥l于C,过点B作BD⊥l于D,再过B点作BG⊥AC于G,
在直角△ABG中,tan∠BAG=
b
a
,∴AB=
2-e2
AG,…①
由圆锥曲线统一定义得:e=
AF
AC
=
BF
BD

∵|FB|≥2|AF|,∴|BD|≥2|AC|,
在直角梯形ABDC中,AG=BD-AC=AC,…②
由①、②可得AB=
2-e2
AC,
又∵|AF|≤
1
3
AB=
1
3
2-e2
AC,
∴e=
|AF|
|AC|
1
3
2-e2

∴0<e≤
5
5

故答案为:0<e≤
5
5
点评:本题考查圆锥曲线的统一定义的应用,结合解含有tan∠BAG=
b
a
的直角三角形,求椭圆的离心率,属于几何方法,运算量小,方便快捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

向边长分别为5,6,
13
的三角形区域内随机投一点M,则该点M与三角形三个顶点距离都大于1的概率为(  )
A、1-
π
18
B、1-
π
12
C、1-
π
9
D、1-
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产A,B两种元件,已知生产A元件的正品率为75%,生产B元件的正品率为80%,生产1个元件A,若是正品则盈利50元,若是次品则亏损10元;生产1个元件B,若是正品则盈利40元,若是次品则亏损5元.
(Ⅰ)求生产5个元件A所得利润不少于140元的概率;
(Ⅱ)设X为生产1个元件A和1个元件B所得总利润,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校对高一年级8个班参加合唱比赛的得分进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数和平均数分别是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下面关于f(x)的判断:
①y=f(x-2)与y=f(2-x)的图象关于直线x=2对称;
②若f(x)为偶函数,且f(2+x)=-f(x),则f(x)的图象关于直线x=2对称.
③设函数f(x)=lnx,且x0,x1,x2∈(0,+∞),若x1<x2,则
1
x2
f(x1)-f(x2)
x1-x2

④函数f(x)=lnx,x0,x1,x2∈(0,+∞),存在x0∈(x1,x2),(x1<x2),使得
1
x0
=
f(x1)-f(x2)
x1-x2

⑤设函数f(x)=x2-3x+4,g(x)=
1
2
x2+4lnx+a
.对于?x1∈[1,e],总?x2∈[1,e],使得f(x1)=g(x2),则实数a的取值范围为[1,
5
4
]

其中正确的判断是
 
(把你认为正确的判断都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

在1个单位长度的线段AB上任取一点P,则点P到A、B两点的距离都不小于
1
6
的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)直棱柱ABCD-A1B1C1D1中,AA1=AD=DC=2,BC=1,∠ADC=90°,下列结论:
①该直棱柱的体积一定是6
②用一平面去截直四棱柱,截面可能为三角形,四边形,五边形和六边形;
③M∈平面ABCD,D1M⊥平面A1C1D,则DM=2
2

④M∈平面ABCD,D1M⊥平面A1C1D,设D1M∩平面A1C1D=O,则
OC1
+
OA1
=
DO

⑤M∈平面ABCD,D1M⊥平面A1C1D,设D1M∩平面A1C1D=O,则D1O:OM=1:2;
其中你认为正确的所有结论的序号是
 
.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
y≥0
x-2y≥0
x-y-2≥0
,则实数m=
y-1
x+1
的取值范围是(  )
A、(-1,1)
B、[-1,1)
C、(-
1
3
1
2
D、[-
1
3
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的准线方程为x=-2.
(1)求此抛物线的方程;
(2)已知点B(-1,0),设直线l:y=kx+b(k≠0)与抛物线C交于不同的两点P(x1,y1),Q(x2,y2),若x轴是∠PBQ的角平分线,证明直线l过定点,并求出该定点坐标.

查看答案和解析>>

同步练习册答案