精英家教网 > 高中数学 > 题目详情
利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为(  )
A、0.9544
B、0.6828
C、
1
3
D、
2
3
考点:几何概型
专题:计算题,概率与统计
分析:本题考查的知识点是几何概型的意义,关键是要找出(0,1)上产生随机数a所对应图形的长度,及事件“3a-1>0”对应的图形的长度,并将其代入几何概型计算公式,进行求解.
解答: 解:3a-1>0即a>
1
3

则事件“3a-1>0”发生的概率为P=
1-
1
3
1
=
23
 

故选:D.
点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某项考试按科目A、科目B依次进行,只有当科目A成绩合格时,才可继续参加科目B的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书.现某人参加这项考试,科目A每次考试成绩合格的概率均为
2
3
,科目B每次考试成绩合格的概率均为
1
2
.假设各次考试成绩合格与否均互不影响.
(1)求他不需要补考就可获得证书的概率;
(2)在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数为ξ,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ax3+x2+x+1有极值的充要条件是(  )
A、a>
1
3
B、a≥
1
3
C、a<
1
3
D、a≤
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sinx(sinx+cosx).
(Ⅰ)求f(x)最小正周期;
(Ⅱ)求函数f(x)的最大值及此时x的值的集合;
(Ⅲ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2
sin(x+
π
4
),当y取得最小值时,tanx等于(  )
A、1
B、-1
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e
是单位向量,求满足
a
e
a
e
=-18的向量
a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若3a+3b<6,则点(a,b)必在(  )
A、直线x+y-2=0的左下方
B、直线x+y-2=0的右上方
C、直线x+2y-2=0的右上方
D、直线x+2y-2=0的左下方

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a<b<c,且c2<a2+b2,则△ABC为
 
三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A中含有三个元素3,x,x2-2x.
(1)求实数x应满足的条件;
(2)若-2∈A,求实数x.

查看答案和解析>>

同步练习册答案