精英家教网 > 高中数学 > 题目详情
已知等比数列{an}中,a1=2,a3=18,等差数列{bn}中,b1=2,且a1+a2+a3=b1+b2+b3+b4>20.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{bn}的前n项和Sn
分析:(1)根据等比数列的性质,有a1a3=a22,可得a2的值,结合题意,a1+a2+a3=b1+b2+b3+b4>20,可得a2的值,由等比数列的通项公式,可得答案,
(2)由(1)可得,结合等差数列的性质,可得bn的通项公式,由等差数列的Sn公式,可得答案.
解答:解:(Ⅰ)因为a1a3=a22,所以a2=±6(2分)
又因为a1+a2+a3>20,所以a2=6,故公比q=3(4分)
所以an=2•3n-1(6分)
(Ⅱ)设{bn}公差为d,所以b1+b2+b3+b4=4b1+6d=26(8分)
由b1=2,可知d=3,bn=3n-1(10分)
所以Sn=
n(b1+bn)
2
=
3n2+n
2
(12分)
点评:本题考查等差数列与等比数列的性质,注意两种常见数列的性质的异同,要区分讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知等比数列{an}的前n项和为Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,则q等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a2=9,a5=243.
(1)求{an}的通项公式;
(2)令bn=log3an,求数列{
1bnbn+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a1•a7=3a3a4,则数列{an}的公比q=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中a1=64,公比q≠1,且a2,a3,a4分别为某等差数列的第5项,第3项,第2项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a3+a6=36,a4+a7=18.若an=
12
,则n=
9
9

查看答案和解析>>

同步练习册答案