精英家教网 > 高中数学 > 题目详情
如图所示,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,
AB∥CD,CD=2AB=2AD.
(Ⅰ)求证:BC⊥BE;
(Ⅱ)求直线CE与平面BDE所成角的正切值;
(Ⅲ)在EC上找一点M,使得BM∥平面ADEF,请确定M点的位置,并给出证明.
考点:直线与平面平行的性质,直线与平面所成的角
专题:证明题,空间位置关系与距离
分析:(I)根据面面垂直的性质可证DE⊥平面ABCD,利用勾股定理证明BC⊥BE;
(II)根据直线与平面所成角的定义证明∠CEB为CE与面BDE所成的角,在Rt△BCE中,求tan∠CEB的值;
(III)取EC中点M,利用面面平行证明BM∥面ADEF.
解答: 解:(I)由已知:平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD.
DE⊥AD,DE?PMADEF,∴DE⊥平面ABCD,∴DE⊥BC,
设CD=2AB=2AD=2,∴DE=1,则BC=
2
,BD=
2
,BE=
3
,CE=
5

∴CE2=BE2+BC2,∴BC⊥BE;
(II)由(1)可知:BC⊥BE,由BC⊥DE,∴BC⊥平面BDE,
∴∠CEB为CE与面BDE所成的角.
在Rt△BCE中,tan∠CEB=
BC
BE
=
2
3
=
6
3

(III)取EC中点M,则BM∥面ADEF,
证明如下:取CD的中点P,连结MB、MP,则BP∥AD,∴BP∥面ADEF,
又M、P分别为EC、DC的中点,∴MP∥ED,∴MP∥面ADEF,又BP∩MP=P,∴面BMP∥面ADEF,
BM?平面BMP,∴BM∥面ADEF.
点评:本题考查了面面平行、面面垂直的性质及直线与平面所成角的求法,考查了学生的空间想象能力与推理论证能力,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将n2个正整数1、2、3、…、n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算某行或某列中的任意两个数a、b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.当n=2时,数表的所有可能的“特征值”的最大值为(  )
A、
4
3
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的流程图,若输入x的值为2,则输出x的值为(  )
A、5B、7C、125D、127

查看答案和解析>>

科目:高中数学 来源: 题型:

由某种设备的使用年限xi(年)与所支出的维修费yi(万元)的数据资料算得如下结果,
5
i=1
xi2=90,
5
i=1
xiyi=112,
5
i=1
xi=20,
5
i=1
yi=25.
(1)求所支出的维修费y对使用年限x的线性回归方程
y
=
b
x+
a

(2)①判断变量x与y之间是正相关还是负相关;
②当使用年限为8年时,试估计支出的维修费是多少.
(附:在线性回归方程
y
=
b
x+
a
中,
b
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x
,其中
.
x
.
y
为样本平均值.)

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,测试成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组[13,14),第二组[14,15),…,第五组[17,18],如图是按上述分组方法得到的频率分布直方图.
(1)设m,n表示样本中两个学生的百米测试成绩,已知m,n∈[13,14)∪[17,18],求事件“|m-n|>2”的概率;
(2)根据有关规定,成绩小于16秒为达标.如果男女生使用相同的达标标准,则男女生达标情况如附表:
     性别
是否达标
合计
达标 a=24 b=
 
 
不达标 c=
 
d=12  
合计     n=50
根据上表数据,能否在犯错误的概率不超过0.01的前提下认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
附:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图为函数f(x)=2sin(ωx+φ)(ω>0,0<φ<
π
2
)的部分图象.
(1)求f(x)的解析式及其单调递增区间;
(2)求函数g(x)=
f(x)+2
f(x+
π
4
)+2
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-ex(a∈R)
(Ⅰ)当a=1时,令h(x)=f′(x),求h(x)的单调区间;
(Ⅱ)若f(x)有两个极值点x1,x2(x1<x2).
(ⅰ)求实数a的取值范围;
(ⅱ)证明:-
e
2
<f(x1)<-1(注:e是自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(1+cosα,1-sinα),参数α∈R,点Q在曲线C:ρ=
6
2
sin(θ+
π
4
)
上.
(1)求点P的轨迹方程和曲线C的直角坐标方程;
(2)求点P与点Q之间距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设以
e
=(1,-2)为方向向量的直线的倾斜角为α,则sin(2α+
π
4
)=
 

查看答案和解析>>

同步练习册答案