【题目】近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量
(单位:千件)与销售价格
(单位:元/件)之间满足如下的关系式:
为常数.已知销售价格为
元/件时,每月可售出
千件.
(1)求实数
的值;
(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格
的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)
科目:高中数学 来源: 题型:
【题目】已知AB是平面内一条长度为4的线段,P是平面内一动点,P可以与A,B重合.当P与A,B不重合时,直线PA与PB的斜率之积为
,
(1)建立适当的坐标系,求动点P的轨迹方程;
(2)一个矩形的四条边与(1)中的轨迹M均相切,求该矩形面积的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆
过点
,并且与圆
:
相外切,设动圆的圆心
的轨迹为
.
(1)求曲线
的方程;
(2)过动点
作直线与曲线
交于
两点,当
为
的中点时,求
的值;
(3)过点
的直线
与曲线
交于
两点,设直线
:
,点
,直线
交
于点
,求证:直线
经过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且抛物线
的焦点恰好是椭圆
的一个焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作直线
与椭圆
交于
,
两点,点
满足
(
为坐标原点),求四边形
面积的最大值,并求此时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
分别为其左、右焦点,
为椭圆
上一点,且
的周长为
.
(1)求椭圆
的方程;
(2)过点
作关于轴
对称的两条不同的直线
,若直线
交椭圆
于一点
,直线
交椭圆
于一点
,证明:直线
过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
的左、右焦点分别为
、
,过
的直线交椭圆于
,
两点,若椭圆
的离心率为
,
的周长为16.
(1)求椭圆
的方程;
(2)设不经过椭圆的中心而平行于弦
的直线交椭圆
于点
,
,设弦
,
的中点分别为
,
.证明:
,
,
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.
![]()
附注:①对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为
,
;
②参考数据:
,
,
,
,
.
(Ⅰ)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在
”为事件
,试估计
的概率;
(Ⅱ)根据该汽车交易市场的历史资料,得到散点图如图2,其中
(单位:年)表示二手车的使用时间,
(单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用
作为二手车平均交易价格
关于其使用年限
的回归方程,相关数据如下表(表中
,
):
|
|
|
|
|
|
5.5 | 8.7 | 1.9 | 301.4 | 79.75 | 385 |
①根据回归方程类型及表中数据,建立
关于
的回归方程;
②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格
的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格
的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com