精英家教网 > 高中数学 > 题目详情
20.已知f(x)=$\left\{\begin{array}{l}{sin\frac{π}{8}x,x≥0}\\{f(x+5)+2,x<0}\end{array}\right.$则f(-2016)的值为(  )
A.810B.809C.808D.806

分析 根据分段函数的表达式,利用递推法进行递推即可.

解答 解:∵f(-2016)=f(-2011)+2=f(-2006)+4=…=f(-1)+403×2
=f(4)+404×2=808+sin($\frac{π}{8}×4$)=808+sin$\frac{π}{2}$=808+1=809,
故选B.

点评 本题主要考查函数值的计算,根据分段函数的表达式,利用递推法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有15个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在极坐标系中,定点A(1,$\frac{π}{2}$),点B在直线ρcosθ+ρsinθ=0上运动,线段AB最短距离是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知关于x的函数y=x3-ax+b.若函数y在(1,+∞)内是增函数,求a得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线$l:\left\{{\begin{array}{l}{x=-\sqrt{3}+\frac{{\sqrt{3}}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}}\right.$(t为参数).
(1)求直线l的倾斜角和t=2时对应的点M(x,y);
(2)求直线l上的点$N(-3\sqrt{3},0)$对应的参数t,并说明t的几何意义.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=ex-x2-ax.若函数f(x)在R上是增函数,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关关系系数r,分别得到以下四个结论:
①y=2.347x-6.423,且r=-0.9284;
②y=-3.476x+5.648,且r=-0.9533;
③y=5.437x+8.493,且r=0.9830; 
④y=-4.326x-4.578,且r=0.8997.
其中一定不正确的结论的序号是(  )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=$\frac{|x|-1}{|x-1|}$-kx不存在零点,则实数k的取值范围是[-1,$\frac{\sqrt{2}-3}{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-x+1,函数g(x)=axex-4x,其中a为大于零的常数.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求证:g(x)-2f(x)≥2(lna-ln2).

查看答案和解析>>

同步练习册答案