精英家教网 > 高中数学 > 题目详情

【题目】在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:

(1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值X(元)的概率分布列和期望E(X).

【答案】(1);(2)分布列见解析,期望为16.

【解析】试题分析:

(1)利用对立事件公式可得该顾客中奖的概率为

(2)由超几何分布求得分布列,然后求解数学期望可得期望值为16.

试题解析:

解法一:(1)PI=1-,即该顾客中奖的概率为

(2)ξ的所有可能值为:0,10,20,50,60(元).P(ξ=0)=P(ξ=10)=

P(ξ=20)=P(ξ=50)=P(ξ=60)=

ξ

0

10

20

50

60

P

bnan

8an+1an16an+1+2an+5=0,

故ξ有分布列:

从而期望Eξ=0×+10×+20×+50×+60×=16.

解法二:(1)P

(2)ξ的分布列求法同解法一

由于10张券总价值为80元,即每张的平均奖品价值为8元,从而抽2张的平均奖品价值Eξ=2×8=16(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列{an}的一个m阶子数列.
已知数列{an}的通项公式为an= (n∈N* , a为常数),等差数列a2 , a3 , a6是数列{an}的一个3子阶数列.
(1)求a的值;
(2)等差数列b1 , b2 , …,bm是{an}的一个m(m≥3,m∈N*)阶子数列,且b1= (k为常数,k∈N* , k≥2),求证:m≤k+1
(3)等比数列c1 , c2 , …,cm是{an}的一个m(m≥3,m∈N*)阶子数列,求证:c1+c1+…+cm≤2﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线为参数),为参数).

(1)化的参数方程为普通方程,并说明它们分别表示什么曲线;

(2)若上的点对应的参数为上的动点,求的中点到直线为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电脑公司有6名产品推销员,其工作年限与推销金额数据如下表:

推销员编号

1

2

3

4

5

工作年限/年

3

5

6

7

9

推销金额/万元

2

3

3

4

5

(1)求年推销金额关于工作年限的线性回归方程;

(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.

附:线性回归方程中,,其中为样本平均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| |= ,求证:
(2)设 =(0,1),若 + = ,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求经过直线L13x + 4y – 5 = 0与直线L22x – 3y + 8 = 0的交点M,且满足下列条件的直线方程

1)与直线2x + y + 5 = 0平行 ;

2)与直线2x + y + 5 = 0垂直;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,其中.函数的图象过点,点与其相邻的最高点的距离为4

(Ⅰ)求函数的单调递减区间;

(Ⅱ)计算的值;

(Ⅲ)设函数,试讨论函数在区间 [03] 上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=( )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案