以下四个关于圆锥曲线的命题中:①设为两个定点,为非零常数,,则动点的轨迹为双曲线;②过定圆上一定点作圆的动点弦,为坐标原点,若则动点的轨迹为圆;③设是的一内角,且,则表示焦点在轴上的双曲线;④已知两定点和一动点,若,则点的轨迹关于原点对称.
其中真命题的序号为 (写出所有真命题的序号).
科目:高中数学 来源: 题型:填空题
已知F1、F2分别是椭圆=1(a>b>0)的左、右焦点,A、B分别是此椭圆的右顶点和上顶点,P是椭圆上一点,O是坐标原点,OP∥AB,PF1⊥x轴,F1A=+,则此椭圆的方程是________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com