精英家教网 > 高中数学 > 题目详情
设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是(   )
A.[-,]B.[-2 , 2 ]C.[-1 , 1 ]D.[-4 , 4 ]
C

试题分析:由题意知点Q的坐标为,设直线的斜率为,则方程为,与抛物线方程y2 = 8x联立得到:,当时显然符合要求,当时,需要
点评:因为抛物线是不封闭的曲线,所以考查直线与抛物线的位置关系时,还要主要数形结合思想的应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(I)求椭圆的方程;
(II)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是
(1)求椭圆的方程;(5分)
(2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图椭圆的上顶点为A,左顶点为B, F为右焦点, 过F作平行于AB的直线交椭圆于C、D两点. 作平行四边形OCED, E恰在椭圆上。

(Ⅰ)求椭圆的离心率;
(Ⅱ)若平行四边形OCED的面积为, 求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点P1的球坐标是P1(4,),P2的柱坐标是P2(2,,1),则|P1P2|=(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:的右焦点为,过的直线与C交于两点,若,则满足条件的的条数为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分9分)已知顶点在原点,焦点在轴上的抛物线过点
(1)求抛物线的标准方程;
(2)过点作直线交抛物线于两点,使得恰好平分线段,求直线的方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。
(Ⅰ)写出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的虚轴长为4,离心率,分别是它的左、右焦点,若过的直线与双曲线的左支交于A、B两点,且的等差中项,则等于 (  )
A.8
B.
C.
D.

查看答案和解析>>

同步练习册答案