精英家教网 > 高中数学 > 题目详情
9.实数a,b,c,d满足下列三个条件:
①d>c;②a+b=c+d;③a+d<b+c,则a,b,c,d按照从小到大的次序排列为a<c<d<b.

分析 根据不等式的性质分别判断即可.

解答 解:∵a+b=c+d,
∴a=c+d-b,
∵a+d<b+c,
∴c+d-b+d<b+c,
∴2d<2b,即d<b,
∵d>c,a+d<b+c,
∴a<b,
∵a+b=c+d,b>d,
∴a<c,
∴a<c<d<b,
故答案为:a<c<d<b.

点评 本题考查了不等式的基本性质的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为$\frac{2}{3}$,中奖可以获得2分;方案乙的中奖率为$\frac{2}{5}$,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们得分之和为X,求X≤3的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红得分之和的分布列,并指出他们选择何种方案抽奖,得分之和的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将8个不同的小球放入3个不同的小盒,要求每个盒子中至少有一个球,且每个盒子里的球的个数都不同,则不同的放法有(  )种.
A.2698B.2688C.1344D.5376

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则椭圆C1的短轴长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{x}$+lg(2-2x)的定义域是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow{m}$=($\sqrt{2}$cos$\frac{π}{4}$,$\sqrt{2}$sin$\frac{π}{4}$),$\overrightarrow{m}$与$\overrightarrow{n}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$$•\overrightarrow{n}$=-1.
(1)若$\overrightarrow{OD}$=(cos$\frac{3π}{4}$,sin$\frac{3π}{4}$),且<$\overrightarrow{OD}$,$\overrightarrow{n}$>=$\frac{π}{4}$,求$\overrightarrow{n}$;
(2)若$\overrightarrow{n}$与$\overrightarrow{q}$=(1,0)夹角为$\frac{π}{2}$,△ABC的三内角A,B,C中B=$\frac{π}{3}$,设$\overrightarrow{p}$=(cosA,2cos2$\frac{C}{2}$),求|$\overrightarrow{n}$+$\overrightarrow{p}$|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足条件$\left\{\begin{array}{l}x-2≥0\\ x+y≤6\\ 2x-y≤6\end{array}\right.$,则$\frac{y}{x}$的最大值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a,b是互不垂直的两条异面直线,则下列命题成立的是(  )
A.存在唯一平面α,使得a?α,且b∥αB.存在唯一直线l,使得l∥a,且l⊥b
C.存在唯一直线l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a?α,且b⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象如图所示.
(1)求函数的解析式;
(2)将函数y=f(x)图象向上平移1个单位,再将所得图象上的点横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求y=g(x)在[0,$\frac{π}{2}$]上的单调增区间.

查看答案和解析>>

同步练习册答案