精英家教网 > 高中数学 > 题目详情
1.若x,y满足条件$\left\{\begin{array}{l}x-2≥0\\ x+y≤6\\ 2x-y≤6\end{array}\right.$,则$\frac{y}{x}$的最大值等于2.

分析 作出不等式组对应的平面区域,利用斜率的几何意义进行求解即可.

解答 解:作出不等式组对应的平面区域如图,
$\frac{y}{x}$的几何意义是区域内的点到原点的斜率,
由图象知OB的斜率最大,
由$\left\{\begin{array}{l}{x-2=0}\\{x+y=6}\end{array}\right.$得$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$,即B(2,4),
则$\frac{y}{x}$的最大值等于$\frac{4}{2}=2$,
故答案为:2.

点评 本题主要考查线性规划的应用,利用数形结合以及直线斜率公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}$>0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB斜倾角分别为α,β,则|tanα-tanβ|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.实数a,b,c,d满足下列三个条件:
①d>c;②a+b=c+d;③a+d<b+c,则a,b,c,d按照从小到大的次序排列为a<c<d<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:
家庭月收入
(单位:元)
2千以下2千~5千5千~8千8千~一万1万~2万2万以上
调查的总人数510151055
有二孩计划的家庭数129734
(Ⅰ)由以上统计数据完成如下2×2列联表,并判断是否有95%的把握认为是否有二孩计划与家庭收入有关?说明你的理由.
收入不高于8千的家庭数收入高于8千的家庭数合计
有二孩计划的家庭数
无二孩计划的家庭数
合计
(Ⅱ)若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为$\frac{1}{2}$,且每个家庭是否为“好字”家庭互不影响,设收入在8千~1万的3个有二孩计划家庭中“好字”家庭有X个,求X的分布列及数学期望.
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知(x+$\frac{{\root{3}{a}}}{x}$)6的展开式中,常数项为40,则$\int_0^1{x^a}$dx=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线y=kx+2与椭圆$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1相切,则斜率k的值是(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$±\frac{\sqrt{6}}{3}$D.$±\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.四名高二学生报名参加数学、物理、化学三门学科竞赛,要求每名学生都参加且只参加1门学科竞赛,则3门学科都有学生参赛的种数有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x3456
y2.5344.5
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\overrightarrow{b}$x+$\overrightarrow{a}$
(2)已知该厂技改前50吨甲产品的生产能耗为45吨标准煤.试根据(2)求出的线性回归方程,预测生产50吨甲产品的生产能耗比技改前降低了多少吨标准煤?
(参考公式:$\overrightarrow{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

同步练习册答案