11£®ÒÑÖªº¯Êýf£¨x£©=x2-£¨a+2£©x+alnx£¬ÆäÖг£Êýa£¾0£®
£¨¢ñ£©µ±a£¾2ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨¢ò£©É趨ÒåÔÚDÉϵĺ¯Êýy=h£¨x£©ÔÚµãP£¨x0£¬h£¨x0£©£©´¦µÄÇÐÏß·½³ÌΪl£ºy=g£¨x£©£¬Èô$\frac{h£¨x£©-g£¨x£©}{{x-{x_0}}}$£¾0ÔÚDÄÚºã³ÉÁ¢£¬Ôò³ÆPΪº¯Êýy=h£¨x£©µÄ¡°Àà¶Ô³Æµã¡±£®µ±a=4ʱ£¬ÊÔÎÊy=f£¨x£©ÊÇ·ñ´æÔÚ¡°Àà¶Ô³Æµã¡±£¬Èô´æÔÚ£¬ÇëÖÁÉÙÇó³öÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©Çó³öº¯ÊýµÄµ¼Êý£¬½áºÏaµÄ·¶Î§Çó³öº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨¢ò£©·¨Ò»£ºa=4ʱ£¬Çó³öf£¨x£©µÄµ¼Êý£¬µÃµ½ÇÐÏß·½³Ì¸ù¾Ýж¨ÒåÎÊÌâµÈ¼ÛÓÚµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔÇó³ö¼´¿É£»
·¨¶þ£º²ÂÏëy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£¬È»ºó¼ÓÒÔÖ¤Ã÷¼´¿É£®

½â´ð ½â£º£¨¢ñ£©º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
¡ß$f£¨x£©=x_{\;}^2-£¨a+2£©x+alnx$£¬
¡à$f'£¨x£©=2x-£¨a+2£©+\frac{a}{x}=\frac{{2{x^2}-£¨a+2£©x+a}}{x}=\frac{{2£¨x-\frac{a}{2}£©£¨x-1£©}}{x}$¡­£¨1·Ö£©
¡ßa£¾2£¬¡à$\frac{a}{2}£¾1$£¬
Áîf¡ä£¨x£©£¾0£¬¼´$\frac{{2£¨x-\frac{a}{2}£©£¨x-1£©}}{x}£¾0$£¬
¡ßx£¾0£¬¡à0£¼x£¼1»ò$x£¾\frac{a}{2}$£¬¡­£¨2·Ö£©
ËùÒÔº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨0£¬1£©£¬$£¨{\frac{a}{2}£¬+¡Þ}£©$¡­£¨3·Ö£©
£¨¢ò£©½â·¨Ò»£ºµ±a=4ʱ£¬$f'£¨x£©=\frac{{2{x^2}-6x+4}}{x}$
ËùÒÔÔÚµãP´¦µÄÇÐÏß·½³ÌΪ$g£¨x£©=\frac{{2x_0^2-6{x_0}+4}}{x_0}£¨{x-{x_0}}£©+x_0^2-6{x_0}+4ln{x_0}$¡­£¨4·Ö£©
Èôº¯Êý$f£¨x£©=x_{\;}^2-6x+4lnx$´æÔÚ¡°Àà¶Ô³Æµã¡±P£¨x0£¬f£¨x0£©£©£¬
ÔòµÈ¼ÛÓÚµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©£¬
µ±x£¾x0ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢£®¡­£¨5·Ö£©
¢Ùµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£¬
µÈ¼ÛÓÚ$x_{\;}^2-6x+4lnx£¼\frac{{2x_0^2-6{x_0}+4}}{x_0}£¨{x-{x_0}}£©+x_0^2-6{x_0}+4ln{x_0}$ºã³ÉÁ¢£¬
¼´µ±0£¼x£¼x0ʱ£¬${x_0}x_{\;}^2-£¨{2x_0^2+4}£©x+4{x_0}lnx+x_0^3+4{x_0}-4{x_0}ln{x_0}£¼0$ºã³ÉÁ¢£¬
Áî$¦Õ£¨x£©={x_0}x_{\;}^2-£¨{2x_0^2+4}£©x+4{x_0}lnx+x_0^3+4{x_0}-4{x_0}ln{x_0}$£¬Ôò¦Õ£¨x0£©=0£¬¡­£¨7·Ö£©
Ҫʹ¦Õ£¨x0£©£¼0ÔÚ0£¼x£¼x0ºã³ÉÁ¢£¬Ö»Òª¦Õ£¨x£©ÔÚ£¨0£¬x0£©µ¥µ÷µÝÔö¼´¿É£®
ÓÖ¡ß$¦Õ'£¨x£©=2{x_0}x_{\;}^2-£¨{2x_0^2+4}£©+\frac{{4{x_0}}}{x}=\frac{{2£¨{{x_0}x-2}£©£¨{x-{x_0}}£©}}{x}$£¬¡­£¨8·Ö£©
¡à${x_0}¡Ü\frac{2}{x_0}$£¬¼´$0£¼{x_0}¡Ü\sqrt{2}$£®¡­£¨9·Ö£©
¢Úµ±x£¾x0ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢Ê±£¬${x_0}¡Ý\sqrt{2}$£®¡­£¨10·Ö£©
¡à${x_0}=\sqrt{2}$£®¡­£¨11·Ö£©
ËùÒÔy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ$\sqrt{2}$£®¡­£¨12·Ö£©

£¨¢ò£©½â·¨¶þ£º
²ÂÏëy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£®¡­£¨4·Ö£©ÏÂÃæ¼ÓÒÔÖ¤Ã÷£º
µ±${x_0}=\sqrt{2}$ʱ£¬$g£¨x£©=£¨{4\sqrt{2}-6}£©x-6+2ln2$¡­£¨5·Ö£©
¢Ùµ±$0£¼x£¼\sqrt{2}$ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£¬
µÈ¼ÛÓÚ$x_{\;}^2-6x+4lnx£¼£¨{4\sqrt{2}-6}£©x-6+2ln2$ºã³ÉÁ¢£¬
Áî$¦Õ£¨x£©=x_{\;}^2-4\sqrt{2}x+4lnx+6-2ln2$¡­£¨7·Ö£©
¡ß$¦Õ'£¨x£©=2x-4\sqrt{2}+\frac{4}{x}£¾0$£¬¡àº¯Êý¦Õ£¨x£©ÔÚ$£¨{0£¬\sqrt{2}}£©$Éϵ¥µ÷µÝÔö£¬
´Ó¶øµ±$0£¼x£¼\sqrt{2}$ʱ£¬$¦Õ£¨x£©£¼¦Õ£¨\sqrt{2}£©=0$ºã³ÉÁ¢£¬
¼´µ±$0£¼x£¼\sqrt{2}$ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£®¡­£¨9·Ö£©
¢ÚͬÀíµ±$x£¾\sqrt{2}$ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢£®¡­£¨10·Ö£©
×ÛÉÏÖªy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°º¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²éж¨ÒåµÄÀí½â£¬ÊÇÒ»µÀ×ÛºÏÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªaΪʵ³£Êý£¬º¯Êýf£¨x£©=lnx£¬g£¨x£©=ax-1£®
£¨¢ñ£©ÌÖÂÛº¯Êýh£¨x£©=f£¨x£©-g£¨x£©µÄµ¥µ÷ÐÔ£»
£¨¢ò£©Èôº¯Êýf£¨x£©Óëg£¨x£©ÓÐÁ½¸ö²»Í¬µÄ½»µãA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©£¬ÆäÖÐx1£¼x2£®
¡¡¡¡ £¨¢¡£©ÇóʵÊýaµÄȡֵ·¶Î§£»
¡¡¡¡ £¨¢¢£©ÇóÖ¤£º-1£¼y1£¼0£¬ÇÒe${\;}^{{y}_{1}}$+e${\;}^{{y}_{2}}$£¾2£®£¨×¢£ºeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=ax3+3x2-6£¬Èôf¡ä£¨-1£©=4£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{19}{3}$B£®$\frac{16}{3}$C£®$\frac{13}{3}$D£®$\frac{10}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Ä³Áª»¶Íí»á¾ÙÐг齱»î¶¯£¬¾Ù°ì·½ÉèÖÃÁ˼ס¢ÒÒÁ½Öֳ齱·½°¸£¬·½°¸¼×µÄÖн±ÂÊΪ$\frac{2}{3}$£¬Öн±¿ÉÒÔ»ñµÃ2·Ö£»·½°¸ÒÒµÄÖн±ÂÊΪ$\frac{2}{5}$£¬Öн±¿ÉÒÔ»ñµÃ3·Ö£»Î´Öн±Ôò²»µÃ·Ö£®Ã¿ÈËÓÐÇÒÖ»ÓÐÒ»´Î³é½±»ú»á£¬Ã¿´Î³é½±Öн±Óë·ñ»¥²»Ó°Ï죬Íí»á½áÊøºóƾ·ÖÊý¶Ò»»½±Æ·£®
£¨¢ñ£©ÈôСÃ÷Ñ¡Ôñ·½°¸¼×³é½±£¬Ð¡ºìÑ¡Ôñ·½°¸Òҳ齱£¬¼ÇËûÃǵ÷ÖÖ®ºÍΪX£¬ÇóX¡Ü3µÄ¸ÅÂÊ£»
£¨¢ò£©ÈôСÃ÷¡¢Ð¡ºìÁ½È˶¼Ñ¡Ôñ·½°¸¼×»ò¶¼Ñ¡Ôñ·½°¸ÒÒ½øÐг齱£¬·Ö±ðÇóÁ½ÖÖ·½°¸ÏÂСÃ÷¡¢Ð¡ºìµÃ·ÖÖ®ºÍµÄ·Ö²¼ÁУ¬²¢Ö¸³öËûÃÇÑ¡ÔñºÎÖÖ·½°¸³é½±£¬µÃ·ÖÖ®ºÍµÄÊýѧÆÚÍû½Ï´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨Àí¿Æ£©ÒÑÖªº¯Êýf£¨x£©=eax•£¨$\frac{a}{x}$+a+1£©£¬ÆäÖÐa¡Ý-1£®
£¨¢ñ£©Çóf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨¢ò£©Èô´æÔÚx1£¾0£¬x2£¼0£¬Ê¹µÃf£¨x1£©£¼f£¨x2£©£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌÊǦÑsin2¦È-8cos¦È=0£¬ÒÔ¼«µãÎªÆ½ÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵxOy£®ÔÚÖ±½Ç×ø±êϵÖУ¬Çãб½ÇΪ¦ÁµÄÖ±Ïßl¹ýµãP£¨2£¬0£©£®
£¨1£©Ð´³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌºÍÖ±ÏßlµÄ²ÎÊý·½³Ì£»
£¨2£©ÉèµãQºÍµãGµÄ¼«×ø±ê·Ö±ðΪ£¨2£¬$\frac{3¦Ð}{2}$£©£¬£¨2£¬¦Ð£©£¬ÈôÖ±Ïßl¾­¹ýµãQ£¬ÇÒÓëÇúÏßCÏཻÓÚA£¬BÁ½µã£¬Çó¡÷GABµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªa£¬b£¬c¾ùΪÕýÊý£¬ÇÒa+2b+3c=9£®ÇóÖ¤£º$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$¡Ý$\frac{1}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®½«8¸ö²»Í¬µÄСÇò·ÅÈë3¸ö²»Í¬µÄСºÐ£¬ÒªÇóÿ¸öºÐ×ÓÖÐÖÁÉÙÓÐÒ»¸öÇò£¬ÇÒÿ¸öºÐ×ÓÀïµÄÇòµÄ¸öÊý¶¼²»Í¬£¬Ôò²»Í¬µÄ·Å·¨ÓУ¨¡¡¡¡£©ÖÖ£®
A£®2698B£®2688C£®1344D£®5376

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èôx£¬yÂú×ãÌõ¼þ$\left\{\begin{array}{l}x-2¡Ý0\\ x+y¡Ü6\\ 2x-y¡Ü6\end{array}\right.$£¬Ôò$\frac{y}{x}$µÄ×î´óÖµµÈÓÚ2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸