·ÖÎö £¨¢ñ£©Çó³öº¯ÊýµÄµ¼Êý£¬½áºÏaµÄ·¶Î§Çó³öº¯ÊýµÄµ¥µ÷Çø¼ä¼´¿É£»
£¨¢ò£©·¨Ò»£ºa=4ʱ£¬Çó³öf£¨x£©µÄµ¼Êý£¬µÃµ½ÇÐÏß·½³Ì¸ù¾Ýж¨ÒåÎÊÌâµÈ¼ÛÓÚµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©£¬½áºÏº¯ÊýµÄµ¥µ÷ÐÔÇó³ö¼´¿É£»
·¨¶þ£º²ÂÏëy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£¬È»ºó¼ÓÒÔÖ¤Ã÷¼´¿É£®
½â´ð ½â£º£¨¢ñ£©º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪ£¨0£¬+¡Þ£©£¬
¡ß$f£¨x£©=x_{\;}^2-£¨a+2£©x+alnx$£¬
¡à$f'£¨x£©=2x-£¨a+2£©+\frac{a}{x}=\frac{{2{x^2}-£¨a+2£©x+a}}{x}=\frac{{2£¨x-\frac{a}{2}£©£¨x-1£©}}{x}$¡£¨1·Ö£©
¡ßa£¾2£¬¡à$\frac{a}{2}£¾1$£¬
Áîf¡ä£¨x£©£¾0£¬¼´$\frac{{2£¨x-\frac{a}{2}£©£¨x-1£©}}{x}£¾0$£¬
¡ßx£¾0£¬¡à0£¼x£¼1»ò$x£¾\frac{a}{2}$£¬¡£¨2·Ö£©
ËùÒÔº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨0£¬1£©£¬$£¨{\frac{a}{2}£¬+¡Þ}£©$¡£¨3·Ö£©
£¨¢ò£©½â·¨Ò»£ºµ±a=4ʱ£¬$f'£¨x£©=\frac{{2{x^2}-6x+4}}{x}$
ËùÒÔÔÚµãP´¦µÄÇÐÏß·½³ÌΪ$g£¨x£©=\frac{{2x_0^2-6{x_0}+4}}{x_0}£¨{x-{x_0}}£©+x_0^2-6{x_0}+4ln{x_0}$¡£¨4·Ö£©
Èôº¯Êý$f£¨x£©=x_{\;}^2-6x+4lnx$´æÔÚ¡°Àà¶Ô³Æµã¡±P£¨x0£¬f£¨x0£©£©£¬
ÔòµÈ¼ÛÓÚµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©£¬
µ±x£¾x0ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢£®¡£¨5·Ö£©
¢Ùµ±0£¼x£¼x0ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£¬
µÈ¼ÛÓÚ$x_{\;}^2-6x+4lnx£¼\frac{{2x_0^2-6{x_0}+4}}{x_0}£¨{x-{x_0}}£©+x_0^2-6{x_0}+4ln{x_0}$ºã³ÉÁ¢£¬
¼´µ±0£¼x£¼x0ʱ£¬${x_0}x_{\;}^2-£¨{2x_0^2+4}£©x+4{x_0}lnx+x_0^3+4{x_0}-4{x_0}ln{x_0}£¼0$ºã³ÉÁ¢£¬
Áî$¦Õ£¨x£©={x_0}x_{\;}^2-£¨{2x_0^2+4}£©x+4{x_0}lnx+x_0^3+4{x_0}-4{x_0}ln{x_0}$£¬Ôò¦Õ£¨x0£©=0£¬¡£¨7·Ö£©
Ҫʹ¦Õ£¨x0£©£¼0ÔÚ0£¼x£¼x0ºã³ÉÁ¢£¬Ö»Òª¦Õ£¨x£©ÔÚ£¨0£¬x0£©µ¥µ÷µÝÔö¼´¿É£®
ÓÖ¡ß$¦Õ'£¨x£©=2{x_0}x_{\;}^2-£¨{2x_0^2+4}£©+\frac{{4{x_0}}}{x}=\frac{{2£¨{{x_0}x-2}£©£¨{x-{x_0}}£©}}{x}$£¬¡£¨8·Ö£©
¡à${x_0}¡Ü\frac{2}{x_0}$£¬¼´$0£¼{x_0}¡Ü\sqrt{2}$£®¡£¨9·Ö£©
¢Úµ±x£¾x0ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢Ê±£¬${x_0}¡Ý\sqrt{2}$£®¡£¨10·Ö£©
¡à${x_0}=\sqrt{2}$£®¡£¨11·Ö£©
ËùÒÔy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ$\sqrt{2}$£®¡£¨12·Ö£©
£¨¢ò£©½â·¨¶þ£º
²ÂÏëy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£®¡£¨4·Ö£©ÏÂÃæ¼ÓÒÔÖ¤Ã÷£º
µ±${x_0}=\sqrt{2}$ʱ£¬$g£¨x£©=£¨{4\sqrt{2}-6}£©x-6+2ln2$¡£¨5·Ö£©
¢Ùµ±$0£¼x£¼\sqrt{2}$ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£¬
µÈ¼ÛÓÚ$x_{\;}^2-6x+4lnx£¼£¨{4\sqrt{2}-6}£©x-6+2ln2$ºã³ÉÁ¢£¬
Áî$¦Õ£¨x£©=x_{\;}^2-4\sqrt{2}x+4lnx+6-2ln2$¡£¨7·Ö£©
¡ß$¦Õ'£¨x£©=2x-4\sqrt{2}+\frac{4}{x}£¾0$£¬¡àº¯Êý¦Õ£¨x£©ÔÚ$£¨{0£¬\sqrt{2}}£©$Éϵ¥µ÷µÝÔö£¬
´Ó¶øµ±$0£¼x£¼\sqrt{2}$ʱ£¬$¦Õ£¨x£©£¼¦Õ£¨\sqrt{2}£©=0$ºã³ÉÁ¢£¬
¼´µ±$0£¼x£¼\sqrt{2}$ʱ£¬f£¨x£©£¼g£¨x£©ºã³ÉÁ¢£®¡£¨9·Ö£©
¢ÚͬÀíµ±$x£¾\sqrt{2}$ʱ£¬f£¨x£©£¾g£¨x£©ºã³ÉÁ¢£®¡£¨10·Ö£©
×ÛÉÏÖªy=f£¨x£©´æÔÚ¡°Àà¶Ô³Æµã¡±£¬ÆäÖÐÒ»¸ö¡°Àà¶Ô³Æµã¡±µÄºá×ø±êΪ${x_0}=\sqrt{2}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄµ¥µ÷ÐÔÎÊÌ⣬¿¼²éµ¼ÊýµÄÓ¦ÓÃÒÔ¼°º¯Êýºã³ÉÁ¢ÎÊÌ⣬¿¼²éж¨ÒåµÄÀí½â£¬ÊÇÒ»µÀ×ÛºÏÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{19}{3}$ | B£® | $\frac{16}{3}$ | C£® | $\frac{13}{3}$ | D£® | $\frac{10}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2698 | B£® | 2688 | C£® | 1344 | D£® | 5376 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com