精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ax3+3x2-6,若f′(-1)=4,则实数a的值为(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

分析 先求函数f(x)=ax3+3x2-6的导数,结合f′(-1)=4,即可求出a.

解答 解:f′(x)=3ax2+6x,
又f′(-1)=4,
∴f′(-1)=3a-6=4,
解得:a=$\frac{10}{3}$.
故选:D.

点评 本题主要考查函数的导数的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届四川巴中市高中高三毕业班10月零诊理数试卷(解析版) 题型:选择题

已知函数,则下列结论正确的是( )

A.导函数为

B.函数的图象关于直线对称

C.函数在区间上是增函数

D.函数的图象可由函数的图象向右平移个单位长度得到

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设x,y,z为整数,且x2+y2+z2=3,证明:
(1)xy+yz+zx≤3;
(2)$\frac{{z}^{2}}{xy}$+$\frac{{x}^{2}}{yz}$+$\frac{{y}^{2}}{zx}$≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动圆经过定点D(1,0),且与直线x=-1相切,设动圆圆心E的轨迹为曲线C
(Ⅰ)求取曲线C的方程;
(Ⅱ)设过点P(1,2)的直线l1,l2分别与曲线C交于A,B两点,直线l1,l2的斜率存在,且倾斜角互补,证明:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A是抛物线y2=2px(p>0)上一点,F为其焦点,以|FA|为半径的圆交准线于B,C两点,△FBC为正三角形,且△ABC的面积是$\frac{128}{3}$,则抛物线的方程是(  )
A.y2=12xB.y2=14xC.y2=16xD.y2=18x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=a(x-1)2+lnx+1,g(x)=f(x)-x,其中a∈R.
(Ⅰ)当a=-$\frac{1}{4}$时,求函数f(x)的极值;
(Ⅱ)当a>0时,求函数g(x)的单调区间;
(Ⅲ)当x∈[1,+∞)时,若y=f(x)图象上的点都在$\left\{\begin{array}{l}x≥1\\ y≤x\end{array}\right.$所表示的平面区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z满足(1-i)z=ai+1,在复平面内复数z对应的点在第一象限(其中i为虚数单位),则实数a的取值可以为(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(Ⅰ)当a>2时,求函数f(x)的单调递增区间;
(Ⅱ)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}$>0在D内恒成立,则称P为函数y=h(x)的“类对称点”.当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB斜倾角分别为α,β,则|tanα-tanβ|的最小值为1.

查看答案和解析>>

同步练习册答案