分析 (I)由抛物线的定义可知E的轨迹为以D为焦点,以x=-1为准线的抛物线,
(II)设l1,l2的方程,联立方程组消元解出A,B的坐标,代入斜率公式计算kAB.
解答 解:(I)∵动圆经过定点D(1,0),且与直线x=-1相切,
∴E到点D(1,0)的距离等于E到直线x=-1的距离,
∴E的轨迹是以D(1,0)为焦点,以直线x=-1为准线的抛物线.
∴曲线C的方程为y2=4x.
(II)设直线l1方程为:y=k(x-1)+2,
∵直线l1,l2的斜率存在,且倾斜角互补,
∴l2的方程为y=-k(x-1)+2.
联立方程组$\left\{\begin{array}{l}{y=k(x-1)+2}\\{{y}^{2}=4x}\end{array}\right.$,消元得:k2x2-(2k2-4k+4)x+(k-2)2=0,
设A(x1,y1),则x1=$\frac{(k-2)^{2}}{{k}^{2}}$=$\frac{{k}^{2}-4k+4}{{k}^{2}}$.
同理可得x2=$\frac{{k}^{2}+4k+4}{{k}^{2}}$,
∴x1+x2=$\frac{2{k}^{2}+8}{{k}^{2}}$,x1-x2=$\frac{-8k}{{k}^{2}}$=$\frac{-8}{k}$.
∴y1-y2=[k(x1-1)+2]-[-k(x2-1)+2]=k(x1+x2)-2k=$\frac{2{k}^{2}+8}{k}-2k=\frac{8}{k}$.
∴kAB=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-1.
∴直线AB的斜率为定值-1.
点评 本题考查了抛物线的定义与性质,直线与抛物线的位置关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}π}{4}$ | B. | $\frac{3π}{4}$ | C. | $\sqrt{3}π$ | D. | 3π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{13}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2698 | B. | 2688 | C. | 1344 | D. | 5376 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com