精英家教网 > 高中数学 > 题目详情
14.已知复数z满足(1-i)z=ai+1,在复平面内复数z对应的点在第一象限(其中i为虚数单位),则实数a的取值可以为(  )
A.0B.1C.-1D.2

分析 把已知等式变形,利用复数代数形式的乘除运算化简,再由实部和虚部均大于0求得答案.

解答 解:由(1-i)z=ai+1,得$z=\frac{1+ai}{1-i}=\frac{(1+ai)(1+i)}{(1-i)(1+i)}=\frac{(1-a)+(1+a)i}{2}$,
∵在复平面内复数z对应的点在第一象限,
∴$\left\{\begin{array}{l}{1-a>0}\\{1+a>0}\end{array}\right.$,解得-1<a<1.
∴a可以取0.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知命题p:x∈A,且A={x|a-1<x<a+1},命题q:x∈B,且B={x|y=$\sqrt{{x}^{2}-3x+2}$}.
(Ⅰ)若A∪B=R,求实数a的取值范围;
(Ⅱ)若p是q的充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y=$\frac{1}{2}$x2,过点Q(1,1)的动直线与抛物线C交于不同的两点A,B,分别以A,B为切点作抛物线的切线l1,l2,直线l1,l2交于点P
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)求△PAB面积的最小值,并求出此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax3+3x2-6,若f′(-1)=4,则实数a的值为(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若A(x1,y1),B(x2,y2)是抛物线y2=4x上相异的两点,且在x轴同侧,点C(2,0).若直线AC,BC的斜率互为相反数,则y1y2=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为$\frac{2}{3}$,中奖可以获得2分;方案乙的中奖率为$\frac{2}{5}$,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.
(Ⅰ)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们得分之和为X,求X≤3的概率;
(Ⅱ)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,分别求两种方案下小明、小红得分之和的分布列,并指出他们选择何种方案抽奖,得分之和的数学期望较大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(理科)已知函数f(x)=eax•($\frac{a}{x}$+a+1),其中a≥-1.
(Ⅰ)求f(x)的单调递减区间;
(Ⅱ)若存在x1>0,x2<0,使得f(x1)<f(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c均为正数,且a+2b+3c=9.求证:$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$≥$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{x}$+lg(2-2x)的定义域是[0,1).

查看答案和解析>>

同步练习册答案