精英家教网 > 高中数学 > 题目详情
12.已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{{\sqrt{3}}}{2}$,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB斜倾角分别为α,β,则|tanα-tanβ|的最小值为1.

分析 利用椭圆的标准方程及其性质可得:kPA•kPB=-$\frac{b^2}{a^2}$,即tanαtanβ=-$\frac{b^2}{a^2}$=-$\frac{1}{4}$,由|tanα-tanβ|=|tanα|+|tanβ|,再利用基本不等式的性质即可得出.

解答 解:∵离心率e=$\frac{{\sqrt{3}}}{2}$=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$,
∴$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{4}$.
设P(x0,y0),椭圆顶点A(-a,0),B(a,0),kPA=$\frac{y_0}{{x{\;}_0+a}},{k_{PB}}=\frac{y_0}{{{x_0}-a}}$,
kPA•kPB=$\frac{y_0}{{x{\;}_0+a}}•\frac{y_0}{{{x_0}-a}}=\frac{{{y_0}^2}}{{{x_0}^2-{a^2}}}$,
又$\frac{{{x_0}^2}}{a^2}+\frac{{{y_0}^2}}{b^2}$=1,∴${y_0}^2={b^2}(1-\frac{{{x_0}^2}}{a^2})=\frac{b^2}{a^2}({a^2}-{x_0}^2)$,
∴kPA•kPB=-$\frac{b^2}{a^2}$,
即tanαtanβ=-$\frac{b^2}{a^2}$=-$\frac{1}{4}$,
∴|tanα-tanβ|=|tanα|+|tanβ|≥2$\sqrt{|tanβ||tanβ|}$=1.当且仅当|tanα|=|tanβ|=1时取等号.
∴|tanα-tanβ|的最小值为1,
故答案为:1.

点评 本题考查了椭圆的标准方程及其性质、基本不等式的性质、斜率计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax3+3x2-6,若f′(-1)=4,则实数a的值为(  )
A.$\frac{19}{3}$B.$\frac{16}{3}$C.$\frac{13}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c均为正数,且a+2b+3c=9.求证:$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$≥$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.将8个不同的小球放入3个不同的小盒,要求每个盒子中至少有一个球,且每个盒子里的球的个数都不同,则不同的放法有(  )种.
A.2698B.2688C.1344D.5376

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f (x)=x2-x|x-a|-3a,a≥3.若函数f (x)恰有两个不同的零点x1,x2,则|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|的取值范围是(  )
A.(1,+∞)B.($\frac{1}{3}$,+∞)C.($\frac{1}{3}$,1]D.($\frac{1}{2}$,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则椭圆C1的短轴长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{x}$+lg(2-2x)的定义域是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足条件$\left\{\begin{array}{l}x-2≥0\\ x+y≤6\\ 2x-y≤6\end{array}\right.$,则$\frac{y}{x}$的最大值等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=x3-2x2-9x+31的驻点为$\frac{-2±\sqrt{34}}{3}$.

查看答案和解析>>

同步练习册答案