精英家教网 > 高中数学 > 题目详情
4.设向量$\overrightarrow{a}$=(2,3m+2),$\overrightarrow{b}$=(m,-1).若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数m等于(  )
A.-1B.1C.-2D.2

分析 根据题意和向量垂直的坐标条件列出方程,求出m的值.

解答 解:∵$\overrightarrow{a}$=(2,3m+2),$\overrightarrow{b}$=(m,-1),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴2m-(3m+2)=0,解得m=-2,
故选C.

点评 本题考查平面向量垂直的坐标条件的应用,以及方程思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆的”(  )
A.必要非充分条件B.充分非必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若不等式${2^{2x-1}}+a>{log_{\frac{1}{2}}}x$在区间[1,2]上恒成立,则a的取值范围是(  )
A.a<-2B.a>-2C.a<-9D.a>-9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数y=f(x)的图象与y=2x+a的图象关于直线y=x对称,且f(2)+f(4)=-1,则a=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与f'(x)=0轴y的交点为R,与抛物线C的交点为O,且|QF|=$\frac{5}{4}$|RQ|.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F1与抛物线C的焦点重合,且离心率为$\frac{1}{2}$
(Ⅰ)求抛物线C和椭圆E的标准方程;
(Ⅱ)若椭圆E的长轴的两端点为A,B,点P为椭圆上异于A,B的动点,定直线x=4与直线PA,PB分别交于M,N两点.请问以MN为直径的圆是否经过x轴上的定点,若存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=$\frac{3}{7}$,an+1=$\frac{3{a}_{n}}{4{a}_{n}+1}$,n∈N+
(1)求证:数列{$\frac{1}{{a}_{n}}$-2}是等比数列,并且求出数列{an}的通项公式;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集为R,M={x|x(x-3)<0},N={x|x<1或x≥3},则正确的为(  )
A.M⊆NB.N⊆MC.RN⊆MD.M⊆∁RN

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P是椭圆$\frac{{x}^{2}}{4}$+y2=1上的动点,则P点到直线l:x+y-2$\sqrt{5}$=0的距离的最小值为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{5}}{2}$C.$\frac{\sqrt{10}}{5}$D.$\frac{\sqrt{2}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足${a_1}+{a_3}=\frac{5}{8},{a_{n+1}}=2{a_n}$,其前n项和为Sn,则Sn-2an的值为-$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案