精英家教网 > 高中数学 > 题目详情

已知一家公司生产某种产品的年固定成本为10万元,每生产1千件该产品需另投入2.7万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且
(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该公司在这一产品的产销过程中所获利润最大.

(Ⅰ);(Ⅱ)当时,W取得最大值为38.6万元.

解析试题分析:(Ⅰ)利润(万元)=销售收入-成本;(Ⅱ)利用导数分别求出分段函数的每一段的最大值,最后再求最大中的最大.
试题解析:
解:(Ⅰ)当时,,  (2分)
时,,         (4分)
                    (6分)
(Ⅱ)①当时,由,得
时,;当时,
∴当时,W取得最大值,即.    (9分)
②当时,
当且仅当,即时,W取得最大值38.
综合①②知:当时,W取得最大值为38.6万元,        (11分)
故当年产量为9千件时,该公司在这一产品的产销过程中所获的年利润最大.    (12分)
考点:导数的实际应用,函数的最值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为实数,函数
(1)若,求的取值范围;
(2)求的最小值;
(3)设函数,直接写出(不需给出演算步骤)不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)的值域为[0,+∞),求a的值;
(2)若函数f(x)的函数值均为非负数,求g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,现要将此铁皮剪出一个等腰三角形,其底边.

(1)设,求三角形铁皮的面积;
(2)求剪下的铁皮三角形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像与函数h(x)=x++2的图像关于点A(0,1)对称.
(1) 求的解析式;
(2) 若,且g(x)在区间[0,2]上为减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定.大桥上的车距与车速和车长的关系满足:为正的常数),假定车身长为,当车速为时,车距为2.66个车身长.
写出车距关于车速的函数关系式;
应规定怎样的车速,才能使大桥上每小时通过的车辆最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求函数的最小值;
(II)对于函数定义域内的任意实数,若存在常数,使得不等式都成立,则称直线是函数的“分界线”.
设函数,试问函数是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)

(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

查看答案和解析>>

同步练习册答案