精英家教网 > 高中数学 > 题目详情
已知椭圆的两个焦点分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为______.
∵椭圆的两个焦点分别为F1(0,-8),F2(0,8),
∴该椭圆的焦点坐标在y轴上,且c=8,
∵椭圆上一点到两个焦点的距离之和为20,
∴2a=20,即a=10,
∴b2=102-82=36,
∴此椭圆的方程为
x2
100
+
y2
36
=1.
故答案为:
x2
100
+
y2
36
=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,左焦点为E,右焦点为F,上顶点为B,若△BEF为等边三角形,则此椭圆的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点A的坐标为(3,1),点P在抛物线y2=4x上移动,F为抛物线的焦点,则|PF|+|PA|的最小值为(  )
A.3B.4C.5D.
5
+2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
9
+
y2
5
=1
的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆周长为2π,A,B两点的坐标分别为(x1,y1)和(x2,y2),则|y2-y1|的值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆
x2
4
+
y2
3
=1
的左右焦点分别为F1,F2,点P在椭圆上,若
PF1
PF2
=
5
2
,则|
PF1
|•|
PF2
|=(  )
A.2B.3C.
7
2
D.
9
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设F1、F2是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,P为直线x=-
3
2
a
上一点,△F1PF2是底角为30°的等腰三角形,则E的离心率为(  )
A.
1
2
B.
2
3
C.
3
4
D.
4
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2为椭圆x2+6y2=36的两个焦点,P为椭圆上一点且PF1⊥PF2,则△F1PF2的面积是(  )
A.36B.12C.6D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,F1、F2是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,过点F2作AB⊥x轴交椭圆于A、B两点,若△F1AB为等腰直角三角形,且∠AF1B=90°,则椭圆的离心率是(  )
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
5
+y2=1
的左右焦点为F1,F2,设P(x0,y0)为椭圆上一点,当∠F1PF2为直角时,点P的横坐标x0=(  )
A.±
15
4
B.±
15
2
C.±
1
2
D.±2

查看答案和解析>>

同步练习册答案