精英家教网 > 高中数学 > 题目详情
如图,F1、F2是椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,过点F2作AB⊥x轴交椭圆于A、B两点,若△F1AB为等腰直角三角形,且∠AF1B=90°,则椭圆的离心率是(  )
A.
2
-1
B.
2
2
C.3-2
2
D.2-
2

∵AF2⊥x轴,∴A(c,
b2
a
)

∵△F1AB为等腰直角三角形,∴|F1F2|=|AF2|,
2c=
b2
a
,∴2ac=b2=a2-c2
∴2e=1-e2
化为e2+2e-1=0,(e>0).
解得e=
-2+2
2
2
=
2
-1

故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
16
+
y2
25
=1
上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

命题P“曲线sinα•x2+cosα•y2=1为焦点在y轴上的椭圆”,写出让命题P成立的一个充分条件______(请填写关于α的值或区间)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2
6
,点P(x0,y0),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x0的取值范围;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知一个椭圆的中心在原点,左焦点为F(-
3
,0)
,且过D(2,0).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,点A(1,0),求线段PA中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为(  )
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设P为椭圆
x2
16
+
y2
9
=1
上的一点,F1、F2是椭圆的焦点,若|PF1|:|PF2|=3:1,则∠F1PF2的大小为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0),A(2,0)为长轴的一个端点,弦BC过椭圆的中心O,且
AC
BC
=0,|
OC
-
OB
|
=2|
BC
-
BA
|
,则其焦距为(  )
A.
2
6
3
B.
4
3
3
C.
4
6
3
D.
2
3
3

查看答案和解析>>

同步练习册答案