精英家教网 > 高中数学 > 题目详情
若点A的坐标为(3,1),点P在抛物线y2=4x上移动,F为抛物线的焦点,则|PF|+|PA|的最小值为(  )
A.3B.4C.5D.
5
+2
抛物线y2=4x的焦点F的坐标是( 1,0 );
设点P在准线上的射影为D,则根据抛物线的定义可知|PF|=|PD|
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
当D,P,A三点共线时|PA|+|PD|最小,为3-(-1)=4
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知A,B,P为椭圆
x2
m2
+
y2
n2
=1(m,n>0)上不同的三点,且A,B连线经过坐标原点,若直线PA,PB的斜率乘积kPA•kPB=-2,则该椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
4
+
y2
3
=1,F1F2是它的两个焦点,P是这个椭圆上任意一点,那么当|PF1|•|PF2|取最大值时,P、F1、F2三点(  )
A.共线
B.组成一个正三角形
C.组成一个等腰直角三角形
D.组成一个锐角三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆
x2
16
+
y2
25
=1
上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点坐标为F1(-5,0),F2(5,0),离心率e=
5
3
,P为椭圆上一点.
(1)求椭圆的标准方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2是椭圆
x2
16
+
y2
9
=1
的两个焦点,过F2的直线交椭圆于点A,B,若|AB|=5,则|AF1|-|BF2|等于(  )
A.3B.8C.13D.16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P在椭圆x2+2y2=2上,F1、F2分别是椭圆的两焦点,且∠F1PF2=90°,则△F1PF2的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

AB是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的任意一条与x轴不垂直的弦,O是椭圆的中心,e为椭圆的离心率,M为AB的中点,则KAB•KOM的值为(  )
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

同步练习册答案