精英家教网 > 高中数学 > 题目详情
设椭圆
x2
4
+
y2
3
=1
的左右焦点分别为F1,F2,点P在椭圆上,若
PF1
PF2
=
5
2
,则|
PF1
|•|
PF2
|=(  )
A.2B.3C.
7
2
D.
9
2
椭圆
x2
4
+
y2
3
=1
中,a=2,b=
3
,可得c=
a2-b2
=1,焦距|F1F2|=2.
设|PF1|=m、|PF2|=n,
根据椭圆的定义,可得m+n=2a=4,平方得m2+2mn+n2=16…①.
△F1PF2中,根据余弦定理得:|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|cos∠F1PF2
即4=m2+n2-2mncos∠F1PF2,…②
PF1
PF2
=
5
2
,∴
|PF1|
|PF2|
cos∠F1PF2=mncos∠F1PF2=
5
2

代入②并整理,可得m2+n2=9…③,
用①减去③,可得2mn=7,解得mn=
7
2
,即|
PF1
|•|
PF2
|=
7
2

故选:C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,已知椭圆中心在原点,F是焦点,A为顶点,准线l交x轴于点B,点P,Q在椭圆上,且PD⊥l于D,QF⊥AO,则①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值为椭圆的离心率的有(  )
A.1个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点坐标为F1(-5,0),F2(5,0),离心率e=
5
3
,P为椭圆上一点.
(1)求椭圆的标准方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P在椭圆x2+2y2=2上,F1、F2分别是椭圆的两焦点,且∠F1PF2=90°,则△F1PF2的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定点N(0,1),动点A,B分别在抛物线y=
1
4
x2
及曲线
x2
3
+
y2
4
=1(x<0,y>0)
上,若B在A的上方,且ABy轴,则△ABN的周长l的取值范围是(  )
A.(
2
3
,2)
B.(
5
2
9
2
C.(
10
3
,4
D.(
5
3
,3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的两个焦点分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
5
+
y2
4
=1
的焦距是(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为4,F1F2分别是椭圆C的左,右焦点,直线y=x与椭圆C在第一象限内的交点为A,△AF1F2的面积为2
6
,点P(x0,y0),是椭圆C上的动点w.
(1)求椭圆C的方程;
(2)若∠F1PF2为钝角,求点P的横坐标x0的取值范围;
(3)求
3
PF1+
2
PA的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若方程mx2+(2-m)y2=1表示焦点在x轴上的椭圆,则实数m的取值范围是(  )
A.(1,+∞)B.(0,2)C.(1,2)D.(0,1)

查看答案和解析>>

同步练习册答案