精英家教网 > 高中数学 > 题目详情
如图,已知椭圆中心在原点,F是焦点,A为顶点,准线l交x轴于点B,点P,Q在椭圆上,且PD⊥l于D,QF⊥AO,则①
|PF|
|PD|
;②
|QF|
|BF|
;③
|AO|
|BO|
;④
|AF|
|AB|
;⑤
|FO|
|AO|
,其中比值为椭圆的离心率的有(  )
A.1个B.3个C.4个D.5个

设椭圆的方程为
x2
a2
+
y2
b2
=1,(0<a<b)依次分析5个比值的式子可得:
①、根据椭圆的第二定义,可得
|PF|
|PD|
=e,故符合;
②、根据椭圆的性质,可得|BF|=
a2
c
-c=
b2
c
,|QF|=
b2
a
,则
|QF|
|BF|
=
c
a
=e,故符合;
③、由椭圆的性质,可得|AO|=a,|BO|=
a2
c
,则
|AO|
|BO|
=
c
a
=e,故符合;
④、由椭圆的性质,可得|AF|=a-c,|AB|=
a2
c
-a=
a
c
(a-c),则
|AF|
|AB|
=
c
a
=e,故符合;
⑤、由椭圆的性质,可得|AO|=a,|FO|=c,
|FO|
|AO|
=
c
a
=e,故符合;
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若方程
x2
25-k
+
y2
k-9
=1表示椭圆,则k的取值范围是(  )
A.(9,17)B.(9,25)C.(9,17)∪(17,25)D.(-∞,9)∪(25,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
2
+y2=1
的左右焦点分别为F1,F2,若过点P(0,-2)及F1的直线交椭圆于A,B两点,求△ABF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

请阅读以下材料,然后解决问题:
①设椭圆的长半轴长为m短半轴长为b,则椭圆的面积为πab
②我们把由半椭圆C1
y2
b2
+
x2
c2
=1(x≤0)与半椭圆C2
x2
a2
+
y2
b2
=1(x≥0)合成的曲线称作“果圆”,其中a2=b2+c2,a>0,b>c>0
如图,设点F0,F1,F2是相应椭圆的焦点,A1,A2和B1,B2是“果圆”与x,y轴的交点,若△F0F1F2是边长为1的等边三角形,则上述“果圆”的面积为:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆
x2
16
+
y2
9
=1
的一个焦点F1的直线与椭圆交于A,B两点,则A,B与椭圆的另一个焦点F2构成△ABF2,则△ABF2的周长是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
,左焦点为E,右焦点为F,上顶点为B,若△BEF为等边三角形,则此椭圆的离心率为(  )
A.
5
+1
2
B.
5
-1
2
C.
1
2
D.2-
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的焦距长等于它的短轴长,则椭圆的离心率等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左右焦点分别为F1,F2,P是椭圆上的一点,且|PF1|,|F1F2|,|PF2|成等比数列,则椭圆的离心率的取值范围为(  )
A.[
1
2
2
2
]
B.[
5
-1,
1
2
]
C.[
2
-1,
1
2
]
D.[
5
5
1
2
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆
x2
4
+
y2
3
=1
的左右焦点分别为F1,F2,点P在椭圆上,若
PF1
PF2
=
5
2
,则|
PF1
|•|
PF2
|=(  )
A.2B.3C.
7
2
D.
9
2

查看答案和解析>>

同步练习册答案