【题目】△ABC的内角A、B、C的对边分别为a、b、c,已知.
(1)求角C;(2)若c=2,求△ABC的面积S的最大值.
【答案】(1);(2).
【解析】试题分析:(1)已知等式利用正弦定理化简,整理后根据sinA不为0求出cosC的值,进而确定出sinC的值;
(2)由cosC,c的值,利用余弦定理列出关系式,再利用基本不等式求出ab的最大值,即可确定出S的最大值.
试题解析:
(1)∵2a=csinA﹣acosC,
∴由正弦定理可得:2sinA=sinCsinA﹣sinAcosC,
∵sinA≠0,
∴可得:2=sinC﹣cosC,解得:sin(C﹣)=1,
∵C∈(0,π),可得:C﹣∈(﹣,),
∴C﹣=,可得:C=.
(2)∵由(1)可得:cosC=﹣,
∴由余弦定理,基本不等式可得:12=b2+a2+ab≥3ab,即:ab≤4,(当且仅当b=a时取等号)
∴S△ABC=absinC=ab≤,可得△ABC面积的最大值为.
科目:高中数学 来源: 题型:
【题目】随着我市九龙江南岸江滨路建设的持续推进,未来市民将新增又一休闲好去处,据悉南江滨路建设工程规划配套建造一个长方形公园ABCD,如图所示,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成,已知休闲区A1B1C1D1的面积为4000m2 , 人行道的宽度分别为4m和10m.
(1)若休闲区的长A1B1=x m,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 (t为参数), ( 为参数).
(1)化 , 的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线 的左顶点且倾斜角为 的直线 交曲线 于 两点,求
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线 : (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为 .
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为 ,直线l与曲线C的交点为A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】解答
(1)设全集为R,A={x|3<x<7},B={x|4<x<10},求R(A∪B)及(RA)∩B.
(2)C={x|a﹣4≤x≤a+4},且A∩C=A,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点的离心率为是和的等比中项.
(1)求曲线的方程;
(2)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于两点,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为,且离心率为,点为椭圆上一动点, 内切圆面积的最大值为.
(1)求椭圆的方程;
(2)设椭圆的左顶点为,过右焦点的直线与椭圆相交于两点,连接并延长分别交直线于两点,以为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知10件不同产品中共有4件次品,现对它们进行一一测试,直至找到所有次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品的不同测试方法数有多少种?
(2)若恰在第5次测试后,就找出了所有次品,则这样的不同测试方法数有多少种?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com