2£®ÒÑÖªÃüÌâ¡°ÈôµãM£¨x0£¬y0£©ÊÇÔ²x2+y2=r2ÉÏÒ»µã£¬Ôò¹ýµãMµÄÔ²µÄÇÐÏß·½³ÌΪ£ºx0x+y0y=r2¡±£®¸ù¾ÝÉÏÊöÃüÌâÀà±È£º¡°ÈôµãM£¨x0£¬y0£©ÊÇÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÉÏÒ»µã£¬Ôò¹ýµãMµÄÇÐÏß·½³ÌΪ$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$£®

·ÖÎö ÓɹýÔ²x2+y2=r2ÉÏÒ»µãµÄÇÐÏß·½³Ìx0x+y0y=r2£¬ÎÒÃDz»ÄÑÀà±ÈÍÆ¶Ï³ö¹ýÍÖÔ²ÉÏÒ»µãµÄÇÐÏß·½³Ì£ºÓÃx0x´úx2£¬ÓÃy0y´úy2£¬¼´¿ÉµÃ£®

½â´ð ½â£ºÀà±È¹ýÔ²ÉÏÒ»µãµÄÇÐÏß·½³Ì£¬¿ÉºÏÇéÍÆÀí£º
¹ýÍÖÔ²ÉÏÒ»µãM£¨x0£¬y0£©´¦µÄÇÐÏß·½³ÌΪ$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$£®
¹Ê´ð°¸Îª£º$\frac{{x}_{0}x}{{a}^{2}}+\frac{{y}_{0}y}{{b}^{2}}=1$£®

µãÆÀ ±¾Ì⿼²éÀûÓÃÀà±ÈÍÆÀíµÃµ½½áÂÛ£¬½âÌâʱҪÈÏÕæ¹Û²ì£¬×¢Òâ¼ÆËãÄÜÁ¦¡¢ÍÆÀíÂÛÖ¤ÄÜÁ¦µÄÅàÑø£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Éèa£¬b£¬c¡ÊR£¬º¯Êýf£¨x£©=ax5-bx3+cx£¬Èôf£¨-3£©=7£¬Ôòf£¨3£©µÄֵΪ£¨¡¡¡¡£©
A£®-13B£®-7C£®7D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®A£¨$\sqrt{2}$£¬1£©ÎªÅ×ÎïÏßx2=2py£¨p£¾0£©ÉÏÒ»µã£¬ÔòAµ½Æä½¹µãFµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\sqrt{2}$+$\frac{1}{2}$C£®2D£®$\sqrt{2}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÈýÀâ×¶A-BCO£¬OA¡¢OB¡¢OCÁ½Á½´¹Ö±ÇÒ³¤¶È¾ùΪ4£¬³¤Îª2µÄÏß¶ÎMNµÄÒ»¸ö¶ËµãMÔÚÀâOAÉÏÔ˶¯£¬ÁíÒ»¸ö¶ËµãNÔÚ¡÷BCOÄÚÔ˶¯£¨º¬±ß½ç£©£¬ÔòMNµÄÖеãPµÄ¹ì¼£ÓëÈýÀâ×¶µÄÃæËùΧ³ÉµÄ¼¸ºÎÌåµÄÌå»ýΪ$\frac{¦Ð}{6}$»ò$\frac{32}{3}$-$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}ÖУ¬a1=$\frac{1}{3}$£¬an+1=$\frac{{a}_{n}}{2-{a}_{n}}$£¨n¡ÊN*£©
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{1}{{a}_{n}}$-1}ÊǵȱÈÊýÁУ¬²¢Çó{an}µÄͨÏʽan£»
£¨2£©Éèbn=$\frac{n{a}_{n}}{1-{a}_{n}}$£¬ÇóÖ¤£º$\sum_{i=1}^{n}{b}_{i}$£¼2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèÇúÏßy=xn+1£¨n¡ÊN+£©Ôڵ㣨1£¬1£©´¦µÄÇÐÏßÓëxÖáµÄ½»µãµÄºá×ø±êΪxn£¬Ôòlog2012x1+log2012x2+¡­+log2012x2011µÄֵΪ£¨¡¡¡¡£©
A£®-log20122011B£®-1C£®£¨log20122011£©-1D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=$\frac{lnx}{x}$
£¨1£©Çóº¯Êýy=f£¨x£©Ôڵ㣨1£¬0£©´¦µÄÇÐÏß·½³Ì£»
£¨2£©ÉèʵÊýkʹµÃf£¨x£©£¼kxºã³ÉÁ¢£¬ÇókµÄȡֵ·¶Î§£»
£¨3£©Éèg£¨x£©=f£¨x£©-kx£¨k¡ÊR£©£¬Çóº¯Êýg£¨x£©ÔÚÇø¼ä[$\frac{1}{e}$£¬e2]ÉϵÄÓÐÁ½¸öÁãµã£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª{an}ΪÊ×Ïîa1=2µÄµÈ²îÊýÁУ¬{bn}ΪÊ×Ïîb1=1µÄµÈ±ÈÊýÁУ¬ÇÒa2+b2=6£¬a3+b3=10£®
£¨1£©·Ö±ðÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©¼Çcn=an•bn£¬ÇóÊýÁÐ{cn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖª¡÷ABCµÄÈý¸ö¶¥µã¾ùÔÚÅ×ÎïÏßy2=xÉÏ£¬±ßACµÄÖÐÏßBM¡ÎxÖᣬ|BM|=2£¬Ôò¡÷ABCµÄÃæ»ýΪ$2\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸