分析 (1)设数列{an}的公差为d(d>0),数列{bn}的公比为q,由题意列方程组求得公差和公比,代入等差数列和等比数列的通项公式得答案;
(2)把数列{an}和{bn}的通项公式代入cn=anbn,然后直接利用错位相减法求数列{cn}前n项和Sn.
解答 解:(1)设公差为d,公比为q,
由a2+b2=6,a3+b3=10,a1=2,b1=1,
得$\left\{\begin{array}{l}{2+d+q=6}\\{2+2d+{q}^{2}=10}\end{array}\right.$,
解得d=2,q=2,
∴an=2n,bn=2n-1,
(2)∵cn=an•bn=2n•2n-1=n•2n,
∴Sn=1•21+2•22+…+n•2n,
∴2Sn=1•22+3•23+…+(n-1)•2n+n•2n,
∴-Sn=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=(1-n)2n+1-2
∴Sn=(n-1)2n+1+2.
点评 本题考查了等差数列和等比数列的通项公式,考查了错位相减法求数列的和,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 112 | B. | 56 | C. | 28 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (-1,0) | C. | (0,1) | D. | (-1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>2 | B. | 0<k<2 | C. | 0<k<4 | D. | k>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com