精英家教网 > 高中数学 > 题目详情
给出下列命题:
①|
a
-
b
|≤|
a
|-|
b
|;②
a
b
共线,
b
c
平,则
a
c
为平行向量;③
a
b
c
为相互不平行向量,则(
b
-
c
a
-(
c
-
a
b
c
垂直;④在△ABC中,若a2taanB=b2tanA,则△ABC一定是等腰直角三角形;⑤
a
b
=
a
c
,则
a
⊥(
b
-
c
)   
其中错误的有
 
分析:根据向量减法的三角形法则,可以判断①的真假;考虑0向量的特殊性,即可判断②的真假;由于数量没有方向,故不存在数量与向量平行,由此判断③的真假;利用正弦定理的边角互化,结合倍角公式及三角函数的性质,我们可以判断④的真假;根据向量加法的分配律,及向量垂直的性质,可以判断⑤的正误.进而得到答案.
解答:解:根据向量减法的三角形法则我们可得:|
a
-
b
|≤|
a
|-|
b
|,当向量
a
b
反向,且|
a
|>|
b
|时取等号,故①正确;
b
=
0
,则当
a
b
共线,
b
c
平行均成立时,则
a
c
为也可能不平行,故②错误;
∵由于(
b
-
c
a
-(
c
-
a
b
是一个数量,故③错误;
在△ABC中,若a2tanB=b2tanA
a2
sinB
cosB
=b2
sinA
cosA
,即a2
b
cosB
=b2
a
cosA

sinA
cosB
=
sinB
cosA
,即sin2A=sin2B
则2A=2B,或2A+2B=π
则△ABC是等腰三角形或直角三角形,故④错误;
a
b
=
a
c
,则
a
b
-
a
c
=0,即
a
•(
b
-
c
)=0,则
a
⊥(
b
-
c
),故⑤正确;
故答案为:②③④
点评:本题考查的知识点是平行向量与共线向量,数量积判断两个平面向量的垂直关系,三角形形状的判断,向量加法的三角形法则,比较综合的考查了平面向量的运算法则和运算性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题
①设a、b为非零实数,则“a<b”是“
1
a
1
b
”的充分不必要条件;
②命题P:垂直于同一条直线的两直线平行,命题q:垂直于同一条直线的两平面平行,则命题p∨q为真命题;
③命题“?r∈R,sinr<1”的否定为“?x0∈R,sinx0>1”;
④命题“若x≥2且y≥3,则x+y≥5”的逆否命题为“若x+y<5,则x<2且y<3”.
其中真命题的个数有(  )
A、4个B、3个C、2个D、1个

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是平面内的任意向量,给出下列命题:
(
a
b
)
c
=(
b
c
)
a
,②若
a
b
=
a
c
,则
a
=
0
b
=
c
,③(
a
+
b
)  (
a
-
b
)
=|
a
|
2
-|
b
|
2

其中正确的是
 
.(写出所有正确判断的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数a,b,c,给出下列命题:
①“a=b”是“ac=bc”充要条件;
②“a+5是无理数”是“a是无理数”的充要条件
③“a>b”是“a2>b2”的充分条件;
④“a<5”是“a<3”的必要条件.
其中假命题的个数是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
AB
=
c
BC
=
a
CA
=
b
,给出下列命题
①若
a
b
>0
,则△ABC为钝角三角形     ②若
a
b
=0
,则△ABC为直角三角形
③若
a
b
=
b
c
,则△ABC为等腰三角形  ④若
c
•(
a
+
b
+
c
)=0
,则△ABC为正三角形
其中真命题的个数是                                                     (  )
A、1B、2C、3D、4

查看答案和解析>>

同步练习册答案