精英家教网 > 高中数学 > 题目详情
1.对于每一个实数x,设f(x)是4x+1,x+2和4-2x三个函数中的最小值,则f(x)的最大值是(  )
A.$\frac{8}{3}$B.3C.$\frac{2}{3}$D.$\frac{1}{2}$

分析 求出f(x)的解析式,分段求最大值得出.

解答 解:解$\left\{\begin{array}{l}{4x+1<x+2}\\{4x+1<4-2x}\end{array}\right.$,得x$<\frac{1}{3}$,解$\left\{\begin{array}{l}{x+2<4x+1}\\{x+2<4-2x}\end{array}\right.$,得$\frac{1}{3}<x<\frac{2}{3}$,解$\left\{\begin{array}{l}{4-2x<4x+1}\\{4-2x<x+2}\end{array}\right.$,得x$>\frac{2}{3}$,
∴f(x)=$\left\{\begin{array}{l}{4x+1,x≤\frac{1}{3}}\\{x+2,\frac{1}{3}<x<\frac{2}{3}}\\{4-2x,x≥\frac{2}{3}}\end{array}\right.$,
当x$≤\frac{1}{3}$时,f(x)是增函数,fmax(x)=f($\frac{1}{3}$)=$\frac{7}{3}$,
当$\frac{1}{3}<x<\frac{2}{3}$时,f(x)是增函数,fmax(x)=f($\frac{2}{3}$)=$\frac{8}{3}$,
当x≥$\frac{2}{3}$时,f(x)是减函数,fmax(x)=f($\frac{2}{3}$)=$\frac{8}{3}$.
综上,f(x)的最大值是$\frac{8}{3}$.
故选:A.

点评 本题考查了分段函数最值的求法,求出f(x)的解析式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在△AOB中,已知P为线段AB上的一点,且$\overrightarrow{BP}$=2$\overrightarrow{PA}$.
(1)若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,求x,y的值;
(2)若|$\overrightarrow{OB}$|=6,且∠AOB=$\frac{π}{3}$,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示,已知A,B,C三点不共线,P为一定点,O为平面ABC外任意一点,则下列能表示向量$\overrightarrow{OP}$的为(  )
A.$\overrightarrow{OA}$+2$\overrightarrow{AB}$+2$\overrightarrow{AC}$B.$\overrightarrow{OA}$-3$\overrightarrow{AB}$-2$\overrightarrow{AC}$C.$\overrightarrow{OA}$+3$\overrightarrow{AB}$-2$\overrightarrow{AC}$D.$\overrightarrow{OA}$+2$\overrightarrow{AB}$-3$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知平行六面体ABCD-A′B′C′D′,则下列四式中:
①$\overrightarrow{AB}$-$\overrightarrow{CB}$=$\overrightarrow{AC}$;
②$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{B′C}$+$\overrightarrow{CC′}$;
③$\overrightarrow{AA′}$=$\overrightarrow{CC′}$;
④$\overrightarrow{AB}$+$\overrightarrow{BB′}$+$\overrightarrow{BC}$+$\overrightarrow{C′C}$=$\overrightarrow{AC}$.
正确的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点A(1,2),B(3,1),则过AB中点垂直于直线x+y+1=0的方程是2x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在锐角三角形ABC中,角A,B,C的对边分别为a,b,c,已知sinA=$\frac{3}{5}$,tan(A-B)=-$\frac{1}{2}$.
(1)求tanB的值;
(2)若b=5,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:已知sinα+2cosα=0,求$\frac{sin(\frac{3}{2}π-α)-2cos(\frac{3}{2}π+α)}{cos(π-α)+sin(π+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.从椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上一点M向x轴作垂线,垂足恰为左焦点F1,点A、B是椭圆与x轴正半轴、y轴正半轴的交点,且AB∥OM,|F1A|=$\sqrt{10}+\sqrt{5}$.
(Ⅰ)求该椭圆的离心率;
(Ⅱ) 若P是该椭圆上的动点,右焦点为F2,求$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,正方体中,两条异面直线BC1与B1D1所成的角是(  )
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案