精英家教网 > 高中数学 > 题目详情

已知函数y=-x2+4ax在[1,3]是单调递减的,则实数a的取值范围为


  1. A.
    (-∞,数学公式]
  2. B.
    (-∞,1)
  3. C.
    [数学公式数学公式]
  4. D.
    [数学公式,+∞)
A
分析:对函数求导,函数在[1,3]单调递减,可知函数在[1,3]身上导数值≤0,可求出a的取值范围.
解答:对函数求导y′=-2x+4a,函数在[1,3]单调递减,
则导数在[1,3]的值≤0,
因函数导数是一次函数,且在[1,3]递减,最大值为y′=-2+4a,则-2+4a≤0,
解得
故选A.
点评:本题主要考出函数的导数求解和单调性的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、已知函数y=x2+2x-3,分别求它在下列区间上的值域.
(1)x∈R;
(2)x∈[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2,若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

16、已知函数y=-x2+4x-2
(1)若x∈[0,5],求该函数的单调增区间;
(2)若x∈[0,3],求该函数的最大值.最小值;
(3)若x∈(3,5),求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-2x+9分别求下列条件下的值域
(1)定义域是{x|3<x≤8};
(2)定义域是{x|-3<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2-x-4的定义域为[m,n],值域为[-
17
4
,-4]
,则m+n的取值范围为(  )

查看答案和解析>>

同步练习册答案