精英家教网 > 高中数学 > 题目详情
已知关于x的不等式
ax2-2x-1
<ax
的解集为A,且A⊆(-∞,1),求实数a的取值范围.
分析:把原不等式右边移项到左边,通分后,根据两式ax-2与x-1相除商为负数,转化为ax-2与x-1的乘积小于0,当a=0时,把a=0代入化简后的不等式中求出不等式的解集,发现满足A⊆(-∞,1),故a不为0,
然后分四种情况考虑:当a大于2时,判断出
2
a
比1小,利用不等式取解集的方法可得出不等式的解集A,并判断出A为(-∞,1)的子集;
当a=2时,求出此时不等式的解集,确定出集合A,然后判断A是否为(-∞,1)的子集;
当a大于0小于2时,判断出
2
a
比1大,利用不等式取解集的方法可得出不等式的解集A,并判断出A为(-∞,1)的子集;
当a小于0时,判断出
2
a
比1小,利用不等式取解集的方法可得出不等式的解集A,并判断出A为(-∞,1)的子集;
综上,得到满足题意的a的取值范围.
解答:解:由
ax2-2
x-1
<ax
得:
ax2-2
x-1
-ax<0

ax-2
x-1
<0

∴(ax-2)(x-1)<0,
当a=0时,原不等式的解集A={x|x>1}不是(-∞,1)的子集,故a≠0,
当a≠0时,∵
2
a
-1=
2-a
a

分四种情况考虑:
当a>2时,
2-a
a
<0
,则
2
a
<1

此时,不等式的解集A={x|
2
a
<x<1}⊆(-∞,1)

当a=2时,(x-1)2<0,故A=∅⊆(-∞,1);
当0<a<2时,
2-a
a
>0
,则
2
a
>1

此时不等式的解集A={x|1<x<
2
a
}
不是(-∞,1)的子集;
当a<0时,
2
a
<1
,此时,不等式的解集A={x|x<
2
a
或x>1}
不是(-∞,1)的子集,
综上,实数a的取值范围为:[2,+∞).
点评:此题考查了其他不等式的解法,以及一元二次不等式的解法,利用了转化及分类讨论的数学思想,是高考中常考的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的不等式
a-xx+1
≥0
的解集为P,不等式|x-1|<1的解集为Q.
(1)若a=3,求P;
(2)若P∪Q=P,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
a(x+1)x-2
<2的解集为A,且5∉A,
(1)求实数a的取值范围;
(2)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
a(x-1)x-2
>2的解集为A,且3∉A
(1)求a范围;
(2)求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式
(a+1)x-3x-1
<1

(Ⅰ)当a=1时,解该不等式;
(Ⅱ)当a>0时,解该不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-5:不等式选讲
设函数f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)已知关于x的不等式a+3<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案