精英家教网 > 高中数学 > 题目详情
11.设向量$\overrightarrow{a}$=(λ,-2),$\overrightarrow{b}$=(λ-1,1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ=-1或2.

分析 利用向量垂直的条件直接求解.

解答 解:∵向量$\overrightarrow{a}$=(λ,-2),$\overrightarrow{b}$=(λ-1,1),
$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}•\overrightarrow{b}$=λ(λ-1)-2=0,
解得λ=-1或λ=2.
故答案为:-1或2.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量垂直的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如图所示,则这个棱柱的侧面积为72.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=2{sin^2}x+\sqrt{3}sin2x+1$.求:
(1)f(x)的单调递增区间;
(2)f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知圆的圆心在曲线y2=x上,且与直线x+2y+6=0相切,当圆的面积最小时,其标准方程为(x-1)2+(y+1)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=lg(|x|+1)的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量.
(Ⅰ)若|$\overrightarrow{a}$-2$\overrightarrow{b}$|=2,试求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(Ⅱ)若$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,试求向量$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{n}$=$\overrightarrow{a}$-3$\overrightarrow{b}$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.$sin\frac{11π}{3}$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=4sin(x-$\frac{π}{3}$)cosx+$\sqrt{3}$.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)若函数g(x)=f(x)-m所在[0,$\frac{π}{2}$]匀上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1与抛物线y2=-4x的焦点重合,椭圆E的离心率为$\frac{\sqrt{2}}{2}$,过点M(m,0)(m>$\frac{3}{4}$)做斜率存在且不为0的直线l,交椭圆E于A,C两点,点P($\frac{5}{4}$,0),且$\overrightarrow{PA}$•$\overrightarrow{PC}$为定值.
(1)求椭圆E的方程;
(2)过点M且垂直于l的直线与椭圆E交于B,D两点,求四边形ABCD面积的最小值.

查看答案和解析>>

同步练习册答案