精英家教网 > 高中数学 > 题目详情
,则的解析式为       

试题分析:
点评:求解函数的解析式要掌握换元法、配凑法、加减消元法等.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).

(1)根据图象,求一次函数的表达式;
(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,
①求S关于的函数表达式;
②求该公司可获得的最大毛利润,并求出此时相应的销售单价.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地西红柿上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨势态,而中期又将出现供大于求使价格连续下跌。现有三种价格模拟函数:①,②,③,(以上三式中均是不为零的常数,且)
(1)    为了准确研究其价格走势,应选择哪种价格模拟函数,为什么?
(2)若,求出所选函数的解析式(注:函数的定义域是)。其中表示8月1日,表示9月1日,……,以此类推;为保证该地的经济收益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该西红柿将在哪几个月份内价格下跌。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在[0,3]上的最大值、最小值分别是( )
A.-4,-15 B.5,-4 C.5,-15  D.5,-16

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知偶函数满足:任意的,都有,且时,,则函数的所有零点之和为             .  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数 .若数列满足,则实数的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为定义在上的可导函数,且对于恒成立,且为自然对数的底,则(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,且恒成立.
(1)求ab的值;
(2)若对,不等式恒成立,求实数m的取值范围.
(3)记,那么当时,是否存在区间),使得函数在区间上的值域恰好为?若存在,请求出区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察数表




1
2
3

4
1


3
5

1
4
2
3


 ( )
A.  3       B.  4       C.         D. 5

查看答案和解析>>

同步练习册答案