精英家教网 > 高中数学 > 题目详情
19.证明:如果f(x)为(-a,a)内可导的偶(奇)函数,则导数f′(x)必为(-a,a)内的奇(偶)函数.

分析 证明f′(x)是(-a,a)内的偶函数即证f′(-x)=f′(x),而函数f(x)没有解析式,故想到运用导数的定义进行证明.

解答 证明:对任意x∈(-a,a),f′(-x)=$\underset{lim}{△x→0}$$\frac{f(-x+△x)-f(-x)}{△x}$=$\underset{lim}{△x→0}$$\frac{f[-(x-△x)]-f(-x)}{△x}$
由于f(x)为奇函数,∴f[-(x-△x)]=-f(x-△x),f(-x)=-f(x),
于是f′(-x)=$\underset{lim}{△x→0}$$\frac{-f(x-△x)+f(x)}{△x}$=$\underset{lim}{△x→0}$$\frac{f(x-△x)-f(x)}{-△x}$=f′(x)
因此f′(-x)=f′(x)即f′(x)是(-a,a)内的偶函数.

点评 本题考查导数的定义以及函数奇偶性的判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.函数f(x)=loga(4x-3)-2(a>0且a≠1)的图象恒过定点(1,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.将函数y=2x的图象向右平移1个单位长度后,所得的图象对应的函数解析式是(  )
A.y=2x+1B.y=2x-1C.y=2x-1D.2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC中,若sinA:sinB:sinC=m:(m+1):2m,则m的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tanα=2,则7sin2α+3cos2α=$\frac{31}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:函数f(x)=lg(ax2-x+$\frac{1}{16}$a)的定义域为R;命题q:?x∈R,x2+4x+a<0,如果命题p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知sin(π+θ)=$\frac{1}{4}$,求$\frac{cos(π+θ)}{cosθ[cos(π+θ)-1]}$+$\frac{sin(\frac{π}{2}-θ)}{cos(θ+2π)cos(π+θ)+cos(-θ)}$的值;
(2)已知tanα=3,求$\frac{3si{n}^{2}α-co{s}^{2}α}{si{n}^{2}α+2co{s}^{2}α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设5${\;}^{lo{g}_{5}(2x-1)}$=25,则x的值等于(  )
A.10B.13C.100D.±100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-1(x≥0)的图象经过点(2,$\frac{1}{2}$),其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)+1(x≥0)的值域.

查看答案和解析>>

同步练习册答案