精英家教网 > 高中数学 > 题目详情

已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.

(1)a1=0,a2=0或a1+1,a2+2或a1=1-,a2=2-.(2)n=7时,Tn取得最大值,T7=7-lg2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设等差数列的前n项和为,且,
(1).求数列的通项公式;
(2).若成等比数列,求正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an},,,记,
,若对于任意,A(n),B(n),C(n)成等差数列.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,其前项和为,满足.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的等比数列{an}的公比为q,且0<q<.
(1)在数列{an}中是否存在三项,使其成等差数列?说明理由;
(2)若a1=1,且对任意正整数k,ak-(ak+1+ak+2)仍是该数列中的某一项.
(ⅰ)求公比q;
(ⅱ)若bn=-logan+1(+1),Sn=b1+b2+…+bn,Tr=S1+S2+…+Sn,试用S2011表示T2011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2),a1.
(1)求证:是等差数列;
(2)求an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}的前n项和为Sn,首项为a1,且,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)若=,设cn=,求数列{cn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设{an}是公比为正数的等比数列,a1=2,a3=a2+4,
(1)求{an}的通项公式;
(2)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

同步练习册答案