精英家教网 > 高中数学 > 题目详情

已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

(1) an=3×(-2)n-1  (2) 存在,{n|n=2k+1,k∈N,k≥5},理由见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}前n项和为Sn,且a2an=S2+Sn对一切正整数都成立.
(1)求a1,a2的值;
(2)设a1>0,数列前n项和为Tn,当n为何值时,Tn最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的首项为,公差为,等比数列的首项为,公比为.
(1)求数列的通项公式;
(2)设第个正方形的边长为,求前个正方形的面积之和.
(注:表示的最小值.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1=1,an-an-1+2anan-1=0(n∈N*,n>1).
(1)求证:数列是等差数列并求数列{an}的通项公式;
(2)设bn=anan+1,求证:b1+b2+…+bn< .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前n项和
(1)求数列的通项公式,并证明是等差数列;
(2)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3a3S5a5S4a4成等差数列.
(1)求数列{an}的通项公式;
(2)设TnSn(n∈N*),求数列{Tn}的最大项的值与最小项的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷数列的首项,前项和为),且点在直线上(为与无关的正实数).
(1)求证:数列)为等比数列;
(2)记数列的公比为,数列满足,设,求数列的前项和
(3)(理)若(1)中无穷等比数列)的各项和存在,记,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,数列满足:
(1)求数列的通项公式
(2)求数列的通项公式
(3)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足是数列 的前项和.
(1)若数列为等差数列.
(ⅰ)求数列的通项
(ⅱ)若数列满足,数列满足,试比较数列 前项和项和的大小;
(2)若对任意恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案